Graphs of Some CAT(0) Complexes

In this note, we characterize the graphs (1-skeletons) of some piecewise Euclidean simplicial and cubical complexes having nonpositive curvature in the sense of Gromov's CAT(0) inequality. Each such cell complex K is simply connected and obeys a certain flag condition. It turns out that if, in addition, all maximal cells are either regular Euclidean cubes or right Euclidean triangles glued in a special way, then the underlying graph G(K) is either a median graph or a hereditary modular graph without two forbidden induced subgraphs. We also characterize the simplicial complexes arising from bridged graphs, a class of graphs whose metric enjoys one of the basic properties of CAT(0) spaces. Additionally, we show that the graphs of all these complexes and some more general classes of graphs have geodesic combings and bicombings verifying the 1- or 2-fellow traveler property.

[1]  Lawrence Reeves Rational subgroups of cubed $3$-manifold groups. , 1995 .

[2]  Ruth Charney,et al.  The (,1)-problem for hyperplane complements associated to infinite reflection groups , 1995 .

[3]  Alain Quilliot On the Helly Property Working as a Compactness Criterion on Graphs , 1985, J. Comb. Theory, Ser. A.

[4]  A. Dress,et al.  Some variations on a theme by Buneman , 1997 .

[5]  Victor Chepoi,et al.  On Distance-Preserving and Domination Elimination Orderings , 1998, SIAM J. Discret. Math..

[6]  Werner Ballmann,et al.  Singular Spaces of Non-Positive Curvature , 1990 .

[7]  Maurice Pouzet,et al.  Retracts: graphs and ordered sets from the metric point of view , 1986 .

[8]  Juan Vicente Llinares,et al.  A fixed point theorem without convexity , 1997 .

[9]  Richard P. Anstee,et al.  On bridged graphs and cop-win graphs , 1988, J. Comb. Theory, Ser. B.

[10]  Herbert Busemann,et al.  The geometry of geodesics , 1955 .

[11]  Martin Farber,et al.  On local convexity in graphs , 1987, Discret. Math..

[12]  H. -J. Bandelt Hereditary modular graphs , 1988, Comb..

[13]  S. P. Avann Metric ternary distributive semi-lattices , 1961 .

[14]  S. Gersten,et al.  Small cancellation theory and automatic groups , 1990 .

[15]  N. Aronszajn,et al.  EXTENSION OF UNIFORMLY CONTINUOUS TRANSFORMATIONS AND HYPERCONVEX METRIC SPACES , 1956 .

[16]  D. Djoković Distance-preserving subgraphs of hypercubes , 1973 .

[17]  Victor Chepoi,et al.  Bridged Graphs Are Cop-Win Graphs: An Algorithmic Proof , 1997, J. Comb. Theory, Ser. B.

[18]  Hans-Jürgen Bandelt,et al.  Superextensions and the depth of median graphs , 1991, J. Comb. Theory, Ser. A.

[19]  Jean-Paul Penot,et al.  Fixed point theorems without convexity , 1979 .

[20]  A. D. Alexandrov Generalized Riemannian spaces , 1986 .

[21]  M. van de Vel,et al.  Collapsible polyhedra and median spaces , 1998 .

[22]  H. M. Mulder The interval function of a graph , 1980 .

[23]  Richard J. Nowakowski,et al.  The smallest graph variety containing all paths , 1983, Discret. Math..

[24]  William A. Kirk,et al.  An abstract fixed point theorem for nonexpansive mappings , 1981 .

[25]  Michah Sageev,et al.  Ends of Group Pairs and Non‐Positively Curved Cube Complexes , 1995 .

[26]  Andreas W. M. Dress,et al.  Gated sets in metric spaces , 1987 .

[27]  Charles F. Miller,et al.  Combinatorial Group Theory , 2002 .

[28]  Alexander Schrijver,et al.  Median graphs and Helly hypergraphs , 1979, Discret. Math..

[29]  Graham A. Niblo,et al.  The geometry of cube complexes and the complexity of their fundamental groups , 1998 .

[30]  M. van de Vel,et al.  MATCHING BINARY CONVEXITIES , 1983 .

[31]  Hans-Jürgen Bandelt,et al.  Retracts of hypercubes , 1984, J. Graph Theory.

[32]  Van de M. L. J. Vel Theory of convex structures , 1993 .

[33]  Miron Nicolesco Sur les fonctions de $n$ variables, harmoniques d’ordre $p$ , 1932 .

[34]  Hans-Jürgen Bandelt,et al.  A fixed cube theorem for median graphs , 1987, Discret. Math..

[35]  H. Bandelt Networks with condorcet solutions , 1985 .

[36]  É. Ghys,et al.  Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .

[37]  Alexander V. Karzanov,et al.  Metrics with finite sets of primitive extensions , 1998 .

[38]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[39]  V. Soltan,et al.  Conditions for invariance of set diameters under d-convexification in a graph , 1983 .

[40]  J. Isbell Six theorems about injective metric spaces , 1964 .

[41]  Yun Tang,et al.  An injective metrization for collapsible polyhedra , 1983 .

[42]  David B. A. Epstein,et al.  Word processing in groups , 1992 .

[43]  Hans-Jürgen Bandelt,et al.  DismantlinG Absolute Retracts of Reflexive Graphs , 1989, Eur. J. Comb..

[44]  Martin R. Bridson,et al.  Geodesics and curvature in metric simplicial complexes , 1991 .

[45]  Christopher Croke,et al.  COLLAPSIBLE POLYHEDRA AND MEDIAN SPACES , 1998 .

[46]  Alexander V. Karzanov,et al.  Minimum 0-Extensions of Graph Metrics , 1998, Eur. J. Comb..

[47]  A. Aleksandrov,et al.  Intrinsic Geometry of Surfaces , 1967 .

[48]  Ruth Charney,et al.  Artin groups of finite type are biautomatic , 1992 .

[49]  Ruth Charney,et al.  Singular Metrics of Nonpositive Curvature on Branched Covers of Riemannian Manifolds , 1993 .

[50]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[51]  S. M. Gersten,et al.  Small cancellation theory and automatic groups: Part II , 1991 .

[52]  Hans-Jürgen Bandelt,et al.  A Helly theorem in weakly modular space , 1996, Discret. Math..

[53]  Hans-Jürgen Bandelt,et al.  Median algebras , 1983, Discret. Math..

[54]  Igor Nikolaev,et al.  Generalized Riemannian spaces , 1986 .

[55]  H. Bandelt,et al.  Embedding Topological Median Algebras in Products of Dendrons , 1989 .