Rational solutions to a KdV-like equation

[1]  S. Novikov,et al.  Theory of Solitons: The Inverse Scattering Method , 1984 .

[2]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[3]  P. Clarkson,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering: References , 1991 .

[4]  J. Nimmo,et al.  On the combinatorics of the Hirota D-operators , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  Wenxiu Ma Generalized Wronskians and Solutions to the Korteweg-de Vries Equation , 2003 .

[6]  Wenxiu Ma Wronskians, generalized Wronskians and solutions to the Korteweg–de Vries equation , 2003, nlin/0303068.

[7]  Wenxiu Ma,et al.  Rational solutions of the Toda lattice equation in Casoratian form , 2004 .

[8]  Wenxiu Ma,et al.  Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions , 2004, nlin/0503001.

[9]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[10]  Alan S. Osborne,et al.  THE FOURTEENTH 'AHA HULIKO' A HAWAIIAN WINTER WORKSHOP , 2005 .

[11]  Kharif Christian,et al.  Rogue Waves in the Ocean , 2009 .

[12]  Wenxiu Ma,et al.  A second Wronskian formulation of the Boussinesq equation , 2009 .

[13]  M. Khalfallah New exact traveling wave solutions of the (3 + 1) dimensional Kadomtsev–Petviashvili (KP) equation , 2009 .

[14]  D. Sinelshchikov Comment on: New exact traveling wave solutions of the (3 + 1)-dimensional Kadomtsev–Petviashvili (KP) equation , 2010 .

[15]  M. Segev,et al.  Introduction to Solitons in Photonic Lattices , 2010 .

[16]  Wenxiu Ma,et al.  Comment on the 3+1 dimensional Kadomtsev–Petviashvili equations , 2011 .

[17]  Yi Zhang,et al.  Generalized Wronskian solutions for the (3 + 1)-dimensional Jimbo-Miwa equation , 2012, Appl. Math. Comput..

[18]  C. Garrett Rogue waves , 2012 .

[19]  Q. P. Liu,et al.  Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  W. Ma Generalized Bilinear Differential Equations , 2012 .

[21]  Xiang Gu,et al.  Hirota bilinear equations with linear subspaces of hyperbolic and trigonometric function solutions , 2013, Appl. Math. Comput..

[22]  Wenxiu Ma,et al.  Trilinear equations, Bell polynomials, and resonant solutions , 2013 .

[23]  Wenxiu Ma,et al.  Bilinear Equations and Resonant Solutions Characterized by Bell Polynomials , 2013 .

[24]  Wenxiu Ma,et al.  Bilinear equations, Bell polynomials and linear superposition principle , 2013 .

[25]  M. Senthilvelan,et al.  Generalized Darboux transformation and Nth order rogue wave solution of a general coupled nonlinear Schrödinger equations , 2014, Commun. Nonlinear Sci. Numer. Simul..