Sequence entropy of folding and the absolute rate of amino acid substitutions

[1]  Stephanie J. Spielman,et al.  Extensively Parameterized Mutation-Selection Models Reliably Capture Site-Specific Selective Constraint. , 2016, Molecular biology and evolution.

[2]  R. Goldstein,et al.  The tangled bank of amino acids , 2016, Protein science : a publication of the Protein Society.

[3]  Dmitry Chudakov,et al.  Local fitness landscape of the green fluorescent protein , 2016, Nature.

[4]  Bhavin S. Khatri,et al.  A coarse-grained biophysical model of sequence evolution and the population size dependence of the speciation rate , 2015, Journal of theoretical biology.

[5]  Richard A. Goldstein,et al.  Nonadaptive Amino Acid Convergence Rates Decrease over Time , 2015, Molecular biology and evolution.

[6]  Fyodor A Kondrashov,et al.  A model of substitution trajectories in sequence space and long-term protein evolution. , 2015, Molecular biology and evolution.

[7]  Joshua B. Plotkin,et al.  Contingency and entrenchment in protein evolution under purifying selection , 2014, Proceedings of the National Academy of Sciences.

[8]  Jesse D. Bloom,et al.  Epistatically Interacting Substitutions Are Enriched during Adaptive Protein Evolution , 2014, PLoS genetics.

[9]  R. Goldstein,et al.  Strong evidence for protein epistasis, weak evidence against it , 2014, Proceedings of the National Academy of Sciences.

[10]  Asif U. Tamuri,et al.  A Penalized-Likelihood Method to Estimate the Distribution of Selection Coefficients from Phylogenetic Data , 2014, Genetics.

[11]  J. Bloom,et al.  Mutational effects on stability are largely conserved during protein evolution , 2013, Proceedings of the National Academy of Sciences.

[12]  Richard A. Goldstein,et al.  Population Size Dependence of Fitness Effect Distribution and Substitution Rate Probed by Biophysical Model of Protein Thermostability , 2013, Genome biology and evolution.

[13]  N. Rodrigue On the Statistical Interpretation of Site-Specific Variables in Phylogeny-Based Substitution Models , 2013, Genetics.

[14]  Michael S. Breen,et al.  Epistasis as the primary factor in molecular evolution , 2012, Nature.

[15]  R. Goldstein,et al.  Amino acid coevolution induces an evolutionary Stokes shift , 2012, Proceedings of the National Academy of Sciences.

[16]  Richard A. Goldstein,et al.  Estimating the Distribution of Selection Coefficients from Phylogenetic Data Using Sitewise Mutation-Selection Models , 2012, Genetics.

[17]  Eugene I Shakhnovich,et al.  A biophysical protein folding model accounts for most mutational fitness effects in viruses , 2011, Proceedings of the National Academy of Sciences.

[18]  R. Goldstein,et al.  The evolution and evolutionary consequences of marginal thermostability in proteins , 2011, Proteins.

[19]  Richard A. Goldstein,et al.  Identifying Changes in Selective Constraints: Host Shifts in Influenza , 2009, PLoS Comput. Biol..

[20]  V. Pande,et al.  On the application of statistical physics to evolutionary biology. , 2009, Journal of theoretical biology.

[21]  Bhavin S. Khatri,et al.  Statistical mechanics of convergent evolution in spatial patterning , 2009, Proceedings of the National Academy of Sciences.

[22]  Todd A. Castoe,et al.  Evidence for an ancient adaptive episode of convergent molecular evolution , 2009, Proceedings of the National Academy of Sciences.

[23]  Eugene I Shakhnovich,et al.  Understanding protein evolution: from protein physics to Darwinian selection. , 2008, Annual review of physical chemistry.

[24]  M. Kimura The role of compensatory neutral mutations in molecular evolution , 1985, Journal of Genetics.

[25]  Paul D. Williams,et al.  Assessing the Accuracy of Ancestral Protein Reconstruction Methods , 2006, PLoS Comput. Biol..

[26]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[27]  H. Philippe,et al.  A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. , 2004, Molecular biology and evolution.

[28]  Jesús A. Izaguirre,et al.  COMPUCELL, a multi-model framework for simulation of morphogenesis , 2004, Bioinform..

[29]  S. Sunyaev,et al.  Dobzhansky–Muller incompatibilities in protein evolution , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Derrick J. Zwickl,et al.  Increased taxon sampling is advantageous for phylogenetic inference. , 2002, Systematic biology.

[31]  D. M. Taverna,et al.  Why are proteins marginally stable? , 2002, Proteins.

[32]  E. Johansson,et al.  Three-dimensional structure of a mammalian purple acid phosphatase at 2.2 A resolution with a mu-(hydr)oxo bridged di-iron center. , 1999, Journal of molecular biology.

[33]  W R Taylor,et al.  Coevolving protein residues: maximum likelihood identification and relationship to structure. , 1999, Journal of molecular biology.

[34]  R A Goldstein,et al.  Using physical-chemistry-based substitution models in phylogenetic analyses of HIV-1 subtypes. , 1999, Molecular biology and evolution.

[35]  J. L. Cherry,et al.  Should we expect substitution rate to depend on population size? , 1998, Genetics.

[36]  A. Halpern,et al.  Evolutionary distances for protein-coding sequences: modeling site-specific residue frequencies. , 1998, Molecular biology and evolution.

[37]  R. Nielsen,et al.  Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. , 1998, Genetics.

[38]  R A Goldstein,et al.  Context-dependent optimal substitution matrices. , 1995, Protein engineering.

[39]  S. Muse,et al.  A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. , 1994, Molecular biology and evolution.

[40]  B. Erman,et al.  Information‐theoretical entropy as a measure of sequence variability , 1991, Proteins.

[41]  Yoh Iwasa,et al.  Free fitness that always increases in evolution. , 1988, Journal of theoretical biology.

[42]  P. Privalov,et al.  Stability of protein structure and hydrophobic interaction. , 1988, Advances in protein chemistry.

[43]  R. Jernigan,et al.  Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation , 1985 .

[44]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[45]  P. Privalov Stability of proteins: small globular proteins. , 1979, Advances in protein chemistry.

[46]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[47]  M. Kimura,et al.  An introduction to population genetics theory , 1971 .

[48]  E. Forgy,et al.  Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .

[49]  M. Kimura,et al.  On the probability of fixation of mutant genes in a population. , 1962, Genetics.

[50]  Motoo Kimura,et al.  Some Problems of Stochastic Processes in Genetics , 1957 .

[51]  H. Eyring The Activated Complex in Chemical Reactions , 1935 .