Diffraction based Hanbury Brown and Twiss interferometry at a hard x-ray free-electron laser

[1]  R. Feidenhansl The European X-ray Free-Electron Laser , 2017 .

[2]  J. Hastings,et al.  Characterization of temporal coherence of hard X-ray free-electron laser pulses with single-shot interferograms , 2017, IUCrJ.

[3]  Wilfried Wurth,et al.  Quantum imaging with incoherently scattered light from a free-electron laser , 2017, Nature Physics.

[4]  Garth J. Williams,et al.  Femtosecond response of polyatomic molecules to ultra-intense hard X-rays , 2017, Nature.

[5]  H. Chapman,et al.  Incoherent Diffractive Imaging via Intensity Correlations of Hard X Rays. , 2017, Physical Review Letters.

[6]  Garth J. Williams,et al.  Probing Dynamics in Colloidal Crystals with Pump-Probe Experiments at LCLS : Methodology and Analysis , 2017 .

[7]  J Stöhr Two-Photon X-Ray Diffraction. , 2017, Physical review letters.

[8]  A. Singer,et al.  Statistical properties of a free-electron laser revealed by Hanbury Brown-Twiss interferometry , 2016, 1611.03996.

[9]  A. Singer,et al.  Erratum: Hanbury Brown-Twiss Interferometry at a Free-Electron Laser [Phys. Rev. Lett. 111, 034802 (2013)]. , 2016, Physical review letters.

[10]  D. Paganin,et al.  Erratum: Experimental X-Ray Ghost Imaging [Phys. Rev. Lett. 117, 113902 (2016)]. , 2016, Physical review letters.

[11]  W. Schlotter,et al.  Elimination of X-Ray Diffraction through Stimulated X-Ray Transmission. , 2016, Physical review letters.

[12]  Shensheng Han,et al.  Fourier-Transform Ghost Imaging with Hard X Rays. , 2016, Physical review letters.

[13]  Daniele Pelliccia,et al.  Experimental x-ray ghost imaging , 2016 .

[14]  Y. Joti,et al.  Characterizing transverse coherence of an ultra-intense focused X-ray free-electron laser by an extended Young’s experiment , 2015, IUCrJ.

[15]  Alvaro Sanchez-Gonzalez,et al.  Ultrafast isomerization initiated by X-ray core ionization , 2015, Nature Communications.

[16]  Gilbert W. Collins,et al.  Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL , 2015, Scientific Reports.

[17]  J. Meijer Colloidal Crystals of Spheres and Cubes in Real and Reciprocal Space , 2015 .

[18]  A. Singer,et al.  Structural evolution of colloidal crystal films in the process of melting revealed by Bragg peak analysis. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[19]  Marcin Sikorski,et al.  The X-ray Pump–Probe instrument at the Linac Coherent Light Source , 2015, Journal of synchrotron radiation.

[20]  Gianluca Geloni,et al.  The European X-ray Free-Electron Laser , 2015 .

[21]  A. Singer,et al.  Coherence Properties of Third-Generation Synchrotron Sources and Free-Electron Lasers , 2020, Synchrotron Light Sources and Free-Electron Lasers.

[22]  Marcin Sikorski,et al.  Intensity interferometry measurements with hard x-ray FEL pulses at the Linac Coherent Light Source , 2014, Optics & Photonics - Optical Engineering + Applications.

[23]  Spatio-temporal coherence of free-electron laser radiation in the extreme ultraviolet determined by a Michelson interferometer , 2014 .

[24]  Marcin Sikorski,et al.  ERRATUM: Single Shot Coherence Properties of the Free-Electron Laser SACLA in the Hard X-ray Regime , 2014, Scientific Reports.

[25]  Marcin Sikorski,et al.  Single Shot Coherence Properties of the Free-Electron Laser SACLA in the Hard X-ray Regime , 2014, Scientific Reports.

[26]  Marcin Sikorski,et al.  Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source. , 2014, The Review of scientific instruments.

[27]  Hidekazu Mimura,et al.  X-ray two-photon absorption competing against single and sequential multiphoton processes , 2014, Nature Photonics.

[28]  Andrej Singer,et al.  Coherence properties of focused X-ray beams at high-brilliance synchrotron sources , 2013, Journal of synchrotron radiation.

[29]  S O Hruszkewycz,et al.  Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS. , 2013, Optics express.

[30]  A. Singer,et al.  Hanbury Brown-Twiss interferometry at a free-electron laser. , 2013, Physical review letters.

[31]  P Emma,et al.  Femtosecond x-ray pulse characterization in free-electron lasers using a cross-correlation technique. , 2012, Physical review letters.

[32]  T. Ishikawa,et al.  A compact X-ray free-electron laser emitting in the sub-ångström region , 2012, Nature Photonics.

[33]  T Salditt,et al.  Spatial and temporal coherence properties of single free-electron laser pulses. , 2012, Optics express.

[34]  P. Kok,et al.  Superresolving multiphoton interferences with independent light sources. , 2012, Physical review letters.

[35]  J. Chalupský,et al.  Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser , 2012, Nature.

[36]  Richard A. London,et al.  Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser , 2012, Nature.

[37]  C. Gutt,et al.  Single shot spatial and temporal coherence properties of the SLAC Linac Coherent Light Source in the hard x-ray regime. , 2012, Physical review letters.

[38]  Helmut Zacharias,et al.  Temporal and spatial coherence properties of free-electron-laser pulses in the extreme ultraviolet regime , 2011 .

[39]  K A Nugent,et al.  Coherence properties of individual femtosecond pulses of an x-ray free-electron laser. , 2011, Physical review letters.

[40]  Garth J. Williams,et al.  Single mimivirus particles intercepted and imaged with an X-ray laser , 2011, Nature.

[41]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[42]  Yaron Silberberg,et al.  Hanbury Brown and Twiss interferometry with interacting photons , 2010 .

[43]  D. Ratner,et al.  First lasing and operation of an ångstrom-wavelength free-electron laser , 2010 .

[44]  S. T. Pratt,et al.  Femtosecond electronic response of atoms to ultra-intense X-rays , 2010, Nature.

[45]  W. Schlotter,et al.  Longitudinal coherence measurements of an extreme-ultraviolet free-electron laser. , 2010, Optics letters.

[46]  R. Glauber Quantum Theory of Optical Coherence , 2006 .

[47]  E. Demler,et al.  Interference between independent fluctuating condensates. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Thomas Weiland,et al.  XFEL: The European X-Ray Free-Electron Laser - Technical Design Report , 2006 .

[49]  J. V. Gomes,et al.  Hanbury Brown Twiss Effect for Ultracold Quantum Gases , 2005, Science.

[50]  P. Vahimaa,et al.  Theory of spatially and spectrally partially coherent pulses. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[51]  O. Mandel,et al.  Spatial quantum noise interferometry in expanding ultracold atom clouds , 2005, Nature.

[52]  Frequency chirped self-amplified spontaneous-emission free-electron lasers , 2003 .

[53]  reymonap,et al.  Methodology and Analysis , 2018, A Manual on International Humanitarian Law and Arms Control Agreements.

[54]  Mikhail Yurkov,et al.  Statistical properties of radiation from VUV and X-ray free electron laser , 1998 .

[55]  S. Schiller,et al.  Measurement of the quantum states of squeezed light , 1997, Nature.

[56]  G. Baym THE PHYSICS OF HANBURY BROWN-TWISS INTENSITY INTERFEROMETRY: FROM STARS TO NUCLEAR COLLISIONS ∗ , 1997, nucl-th/9804026.

[57]  H. Paul Interference between independent photons , 1986 .

[58]  C. Pellegrini Physics of the Free Electron Laser , 1983 .

[59]  R. H. Brown,et al.  A Test of a New Type of Stellar Interferometer on Sirius , 1956, Nature.

[60]  R. H. Brown,et al.  Correlation between Photons in two Coherent Beams of Light , 1956, Nature.