Practical error bounds for a non-intrusive bi-fidelity approach to parametric/stochastic model reduction

Abstract For practical model-based demands, such as design space exploration and uncertainty quantification (UQ), a high-fidelity model that produces accurate outputs often has high computational cost, while a low-fidelity model with less accurate outputs has low computational cost. It is often possible to construct a bi-fidelity model having accuracy comparable with the high-fidelity model and computational cost comparable with the low-fidelity model. This work presents the construction and analysis of a non-intrusive (i.e., sample-based) bi-fidelity model that relies on the low-rank structure of the map between model parameters/uncertain inputs and the solution of interest, if exists. Specifically, we derive a novel, pragmatic estimate for the error committed by this bi-fidelity model. We show that this error bound can be used to determine if a given pair of low- and high-fidelity models will lead to an accurate bi-fidelity approximation. The cost of this error bound is relatively small and depends on the solution rank. The value of this error estimate is demonstrated using two example problems in the context of UQ, involving linear and non-linear partial differential equations.

[1]  Dongbin Xiu,et al.  A Stochastic Collocation Algorithm with Multifidelity Models , 2014, SIAM J. Sci. Comput..

[2]  Janet S. Peterson,et al.  The Reduced Basis Method for Incompressible Viscous Flow Calculations , 1989 .

[3]  Alireza Doostan,et al.  Coherence motivated sampling and convergence analysis of least squares polynomial Chaos regression , 2014, 1410.1931.

[4]  P. Stern,et al.  Automatic choice of global shape functions in structural analysis , 1978 .

[5]  Dongbin Xiu,et al.  Computational Aspects of Stochastic Collocation with Multifidelity Models , 2014, SIAM/ASA J. Uncertain. Quantification.

[6]  Geoffrey T. Parks,et al.  Decomposition-based Evolutionary Aerodynamic Robust Optimization with Multi-fidelity Point Collocation Non-intrusive Polynomial Chaos , 2015 .

[7]  Daniele Venturi,et al.  Multi-fidelity Gaussian process regression for prediction of random fields , 2017, J. Comput. Phys..

[8]  Hillary R. Fairbanks,et al.  Multi-fidelity uncertainty quantification of irradiated particle-laden turbulence , 2018, 1801.06062.

[9]  Yanlai Chen,et al.  Offline-Enhanced Reduced Basis Method Through Adaptive Construction of the Surrogate Training Set , 2017, J. Sci. Comput..

[10]  Karen Willcox,et al.  Model Reduction for Large-Scale Systems with High-Dimensional Parametric Input Space , 2008, SIAM J. Sci. Comput..

[11]  Michael S. Eldred,et al.  Multi-fidelity Methods in Aerodynamic Robust Optimization , 2016 .

[12]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[13]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[14]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[15]  Daniele Venturi,et al.  Multifidelity Information Fusion Algorithms for High-Dimensional Systems and Massive Data sets , 2016, SIAM J. Sci. Comput..

[16]  Albert Cohen,et al.  Kolmogorov widths and low-rank approximations of parametric elliptic PDEs , 2015, Math. Comput..

[17]  Gianluca Geraci,et al.  A Bi-Fidelity Approach for Uncertainty Quantification of Heat Transfer in a Rectangular Ribbed Channel , 2016 .

[18]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[19]  Alireza Doostan,et al.  A weighted l1-minimization approach for sparse polynomial chaos expansions , 2013, J. Comput. Phys..

[20]  Leo Wai-Tsun Ng,et al.  Multifidelity Uncertainty Quantification Using Non-Intrusive Polynomial Chaos and Stochastic Collocation , 2012 .

[21]  Roger Ghanem,et al.  Stochastic model reduction for chaos representations , 2007 .

[22]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[23]  A. Doostan,et al.  Least squares polynomial chaos expansion: A review of sampling strategies , 2017, 1706.07564.

[24]  P Perdikaris,et al.  Multi-fidelity modelling via recursive co-kriging and Gaussian–Markov random fields , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  René Vidal,et al.  Sparse subspace clustering , 2009, CVPR.

[26]  Loïc Le Gratiet,et al.  Cokriging-Based Sequential Design Strategies Using Fast Cross-Validation Techniques for Multi-Fidelity Computer Codes , 2015, Technometrics.

[27]  Matthew J. Heaton,et al.  Parameter tuning for a multi-fidelity dynamical model of the magnetosphere , 2013, 1303.6992.

[28]  D. Rovas,et al.  Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .

[29]  Gene H. Golub,et al.  Matrix computations , 1983 .

[30]  Alireza Doostan,et al.  Basis adaptive sample efficient polynomial chaos (BASE-PC) , 2017, J. Comput. Phys..

[31]  Alexander I. J. Forrester,et al.  Multi-fidelity optimization via surrogate modelling , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  Michael S. Eldred,et al.  Sparse Pseudospectral Approximation Method , 2011, 1109.2936.

[33]  Per-Gunnar Martinsson,et al.  On the Compression of Low Rank Matrices , 2005, SIAM J. Sci. Comput..

[34]  Gianluca Iaccarino,et al.  A low-rank control variate for multilevel Monte Carlo simulation of high-dimensional uncertain systems , 2016, J. Comput. Phys..

[35]  P. LeQuéré,et al.  Accurate solutions to the square thermally driven cavity at high Rayleigh number , 1991 .

[36]  C. Chui,et al.  Article in Press Applied and Computational Harmonic Analysis a Randomized Algorithm for the Decomposition of Matrices , 2022 .

[37]  A. O'Hagan,et al.  Predicting the output from a complex computer code when fast approximations are available , 2000 .

[38]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[39]  Carolyn Conner Seepersad,et al.  Building Surrogate Models Based on Detailed and Approximate Simulations , 2004, DAC 2004.

[40]  Alireza Doostan,et al.  Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies , 2014, J. Comput. Phys..

[41]  Loic Le Gratiet,et al.  RECURSIVE CO-KRIGING MODEL FOR DESIGN OF COMPUTER EXPERIMENTS WITH MULTIPLE LEVELS OF FIDELITY , 2012, 1210.0686.

[42]  Ahmed K. Noor,et al.  Reduced Basis Technique for Nonlinear Analysis of Structures , 1980 .

[43]  Richard G. Baraniuk,et al.  Self-Expressive Decompositions for Matrix Approximation and Clustering , 2015, ArXiv.

[44]  M. Eldred Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Analysis and Design , 2009 .

[45]  Petros Drineas,et al.  CUR matrix decompositions for improved data analysis , 2009, Proceedings of the National Academy of Sciences.

[46]  Mehrdad Raisee,et al.  An efficient non-intrusive reduced basis model for high dimensional stochastic problems in CFD , 2016 .

[47]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[48]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[49]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[50]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[51]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[52]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[53]  Roger Ghanem,et al.  Efficient solution of stochastic systems: Application to the embankment dam problem , 2007 .

[54]  P. Sagaut,et al.  Building Efficient Response Surfaces of Aerodynamic Functions with Kriging and Cokriging , 2008 .