Mechanobiologie der Frakturheilung Teil 1

ZusammenfassungDass die Stabilität der Osteosynthese den Verlauf der Frakturheilung beeinflusst, ist unumstritten. Nicht bekannt war bisher jedoch, nach welchen Regeln die mechanischen Bedingungen die Knochenheilung steuern. Dadurch war es bisher nicht möglich, Osteosynthesen gezielt biomechanisch zu optimieren. In diesem Artikel wird beschrieben, wie Stabilität, interfragmentäre Bewegung und interfragmentäre Gewebedehnungen zusammenhängen und die zellulären Prozesse bei der Gewebedifferenzierung in der Knochenheilungszone beeinflussen. Es wird eine Gewebedifferenzierungshypothese dargestellt, die unter Berücksichtigung tierexperimenteller Studien, zellbiomechanischer Untersuchungen und numerischer Verfahren entwickelt wurde. Diese Gewebedifferenzierungshypothese erlaubt es, desmale und enchondrale Knochenneubildung in Abhängigkeit von den mechanischen Bedingungen im Frakturheilungsgebiet vorauszusagen. Dadurch wird die Möglichkeit eröffnet, die Stabilität der Osteosynthesen gezielt auszuwählen, um eine gute Knochenheilung zu erreichen.AbstractIt is undisputed that the stability of fracture fixation influences the fracture healing process; however, up until now the mechanical conditions which guide bone healing were unknown and it was therefore not possible to optimize the design of fracture fixation devices. This article presents how the stability of fracture fixation, interfragmentary movement and interfragmentary tissue strain depend on each other and how the mechanical environment influences the cellular processes in the healing tissue. A tissue transformation hypothesis is presented which was developed taking into consideration the results of animal experimental studies, cellular biomechanical investigations and numerical methods. This tissue differentiation hypothesis allows the prediction of bone healing by intramembranous and endochondral bone formation as a function of the local mechanical environment in the fracture healing zone. This allows the possibility for selection of a fracture fixation stability to achieve high-quality bone healing.

[1]  D Kaspar,et al.  Effects of Mechanical Factors on the Fracture Healing Process , 1998, Clinical orthopaedics and related research.

[2]  Michael Bottlang,et al.  Far cortical locking can improve healing of fractures stabilized with locking plates. , 2010, The Journal of bone and joint surgery. American volume.

[3]  Lutz Claes,et al.  Fracture healing under healthy and inflammatory conditions , 2012, Nature Reviews Rheumatology.

[4]  J. L. Cunningham,et al.  Monitoring the Mechanical Properties of Healing Bone , 2009, Clinical orthopaedics and related research.

[5]  Daniel L. Bellin,et al.  Correlations between local strains and tissue phenotypes in an experimental model of skeletal healing. , 2010, Journal of biomechanics.

[6]  K. Stürmer,et al.  Die Wertigkeit verschiedener Versuchstierspecies für experimentelle Untersuchungen am Knochen , 1990 .

[7]  J. Lotz,et al.  Pressure and Distortion Regulate Human Mesenchymal Stem Cell Gene Expression , 2009, Annals of Biomedical Engineering.

[8]  Christopher R Jacobs,et al.  The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. , 2010, Birth defects research. Part C, Embryo today : reviews.

[9]  J. Bogdanske,et al.  The effect of increasing gap width on localized densitometric changes within tibial ostectomies in a canine model , 1994, Calcified Tissue International.

[10]  M. El-Sayed,et al.  Biological internal fixation of comminuted femur shaft fractures by bridge plating in adults , 2014 .

[11]  J Kenwright,et al.  Controlled mechanical stimulation in the treatment of tibial fractures. , 1989, Clinical orthopaedics and related research.

[12]  David A Lee,et al.  Dynamic compressive strain influences chondrogenic gene expression in human mesenchymal stem cells. , 2006, Biorheology.

[13]  Georg N Duda,et al.  Insight into the molecular pathophysiology of delayed bone healing in a sheep model. , 2010, Tissue engineering. Part A.

[14]  P. Prendergast,et al.  Mechanisms of strain-mediated mesenchymal stem cell apoptosis. , 2008, Journal of biomechanical engineering.

[15]  D L Bader,et al.  Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose , 1997, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[16]  P Augat,et al.  Effect of dynamization on gap healing of diaphyseal fractures under external fixation. , 1995, Clinical biomechanics.

[17]  S M Perren,et al.  The influence of cyclic compression and distraction on the healing of experimental tibial fractures , 2004, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[18]  Lutz Claes,et al.  Mitogens are increased in the systemic circulation during bone callus healing , 2003, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[19]  S M Perren,et al.  Role of interfragmentary strain in fracture healing: Ovine model of a healing osteotomy , 1991, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[20]  L. Claes,et al.  Influence of size and stability of the osteotomy gap on the success of fracture healing , 1997, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[21]  J Cordey,et al.  Developments of compression plate techniques for internal fixation of fractures. , 1973, Progress in surgery.

[22]  M. Lenburg,et al.  Transcriptional profiling and biochemical analysis of mechanically induced cartilaginous tissues in a rat model. , 2010, Arthritis and rheumatism.

[23]  G A Ateshian,et al.  Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. , 2000, Journal of biomechanical engineering.

[24]  A. Goodship,et al.  The influence of intermittent micromovement upon the healing of experimental fractures. , 1984, Orthopedics.

[25]  J Cordey,et al.  [Tissue differences in fracture healing (author's transl)]. , 1977, Unfallheilkunde.

[26]  D. Hu,et al.  Molecular aspects of healing in stabilized and non‐stabilized fractures , 2001, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[27]  K. Stürmer,et al.  Intravitale Bewegungsmessung bei der Frakturheilung , 1990 .

[28]  N P Haas,et al.  Angle stable locking reduces interfragmentary movements and promotes healing after unreamed nailing. Study of a displaced osteotomy model in sheep tibiae. , 2005, The Journal of bone and joint surgery. American volume.

[29]  D Kaspar,et al.  Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. , 2000, Journal of biomechanics.

[30]  Yubo Sun,et al.  Effects of Cyclic Compressive Loading on Chondrogenesis of Rabbit Bone‐Marrow Derived Mesenchymal Stem Cells , 2004, Stem cells.

[31]  Lutz Claes,et al.  Prediction of fracture healing under axial loading, shear loading and bending is possible using distortional and dilatational strains as determining mechanical stimuli , 2013, Journal of The Royal Society Interface.

[32]  L. Claes,et al.  Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. , 1998, Journal of biomechanics.

[33]  L. Claes,et al.  Metaphyseal fracture healing follows similar biomechanical rules as diaphyseal healing , 2011, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[34]  F. Pauwels,et al.  Eine neue Theorie ber den Einflu mechanischer Reize auf die Differenzierung der Sttzgewebe: Zehnter Beitrag zur funktionellen Anatomie und kausalen Morphologie des Sttzapparates , 1960 .

[35]  A. Ignatius,et al.  Mechanobiologie und Knochenstoffwechsel , 2015, Der Unfallchirurg.

[36]  Elizabeth G Loboa,et al.  Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. , 2006, Tissue engineering.

[37]  J Kenwright,et al.  The influence of induced micromovement upon the healing of experimental tibial fractures. , 1985, The Journal of bone and joint surgery. British volume.

[38]  A Rohlmann,et al.  Hip joint forces in sheep. , 1999, Journal of biomechanics.

[39]  H. Cheung,et al.  Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. , 2009, Stem cells and development.

[40]  T. Einhorn,et al.  Mechanical stimulation alters tissue differentiation and molecular expression during bone healing , 2009, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[41]  Lutz Claes,et al.  Shear movement at the fracture site delays healing in a diaphyseal fracture model , 2003, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[42]  Stuart B Goodman,et al.  Dose- and time-dependent effects of cyclic hydrostatic pressure on transforming growth factor-beta3-induced chondrogenesis by adult human mesenchymal stem cells in vitro. , 2006, Tissue engineering.

[43]  エクストレーム,カリン,et al.  Osteogenic differentiation of mesenchymal stem cells , 2013 .

[44]  Georg N. Duda,et al.  Interaction of Age and Mechanical Stability on Bone Defect Healing: An Early Transcriptional Analysis of Fracture Hematoma in Rat , 2014, PloS one.

[45]  C. Neidlinger-Wilke,et al.  Signaltransduktionswege der Mechanotransduktion in Knochenzellen , 2010, Osteologie.

[46]  T. Einhorn,et al.  Induction of a neoarthrosis by precisely controlled motion in an experimental mid‐femoral defect , 2002, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[47]  M O Heller,et al.  Comparison of unreamed nailing and external fixation of tibial diastases—mechanical conditions during healing and biological outcome , 2004, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[48]  E B Hunziker,et al.  Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. , 1995, Journal of cell science.

[49]  Lutz Claes,et al.  Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain. , 2002, Journal of biomechanics.

[50]  A. Ignatius,et al.  [Mechanobiology and bone metabolism: Clinical relevance for fracture treatment]. , 2015, Der Unfallchirurg.

[51]  Schenk Rk [Histology of primary bone healing in light of new concepts of bone reconstruction (author's transl)]. , 1978 .

[52]  A. Simpson,et al.  Inhibition of fracture healing. , 2007, The Journal of bone and joint surgery. British volume.

[53]  F. Pauwels,et al.  [A new theory on the influence of mechanical stimuli on the differentiation of supporting tissue. The tenth contribution to the functional anatomy and causal morphology of the supporting structure]. , 1960, Zeitschrift fur Anatomie und Entwicklungsgeschichte.

[54]  S M Perren,et al.  EVOLUTION OF THE INTERNAL FIXATION OF LONG BONE FRACTURES , 2002 .

[55]  M. Heller,et al.  The initial phase of fracture healing is specifically sensitive to mechanical conditions , 2003, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[56]  Louis C. Gerstenfeld,et al.  Fracture healing: mechanisms and interventions , 2015, Nature Reviews Rheumatology.

[57]  H. Uhthoff,et al.  Differences in healing of metaphyseal and diaphyseal fractures. , 1971, Canadian journal of surgery. Journal canadien de chirurgie.

[58]  Georg N Duda,et al.  Mechanical induction of critically delayed bone healing in sheep: radiological and biomechanical results. , 2008, Journal of biomechanics.

[59]  L Claes,et al.  A numerical model of the fracture healing process that describes tissue development and revascularisation , 2011, Computer methods in biomechanics and biomedical engineering.