A parieto-premotor network for object manipulation: evidence from neuroimaging

Abstract Functional magnetic resonance imaging (fMRI) was used to assess cerebral activation during manipulation of various complex meaningless objects as compared to manipulation of a single simple object (a sphere). Significant activation was found bilaterally in the ventral premotor cortex (Brodmann’s area 44), in the cortex lining the anterior part of the intraparietal sulcus (most probably corresponding to monkey anterior intraparietal area, AIP), in the superior parietal lobule and in the opercular parietal cortex including the secondary somatosensory area (SII). We suggest that the cortex lining the anterior part of the intraparietal sulcus and area 44 are functionally connected and mediate object manipulation in humans.

[1]  R. Seitz,et al.  Learning of Sequential Finger Movements in Man: A Combined Kinematic and Positron Emission Tomography (PET) Study , 1992, The European journal of neuroscience.

[2]  H. Sakata,et al.  Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. , 1973, Brain research.

[3]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[4]  Elisabeth A. Murray,et al.  Relative contributions of SII and area 5 to tactile discrimination in monkeys , 1984, Behavioural Brain Research.

[5]  Karl J. Friston,et al.  Regional cerebral blood flow during voluntary arm and hand movements in human subjects. , 1991, Journal of neurophysiology.

[6]  R. Passingham,et al.  Functional anatomy of the mental representation of upper extremity movements in healthy subjects. , 1995, Journal of neurophysiology.

[7]  M. Arbib,et al.  Grasping objects: the cortical mechanisms of visuomotor transformation , 1995, Trends in Neurosciences.

[8]  G. Rizzolatti,et al.  Object representation in the ventral premotor cortex (area F5) of the monkey. , 1997, Journal of neurophysiology.

[9]  H. Freund,et al.  Sensorimotor disturbances in patients with lesions of the parietal cortex. , 1989, Brain : a journal of neurology.

[10]  Mortimer Mishkin,et al.  Analogous neural models for tactual and visual learning , 1979, Neuropsychologia.

[11]  C Dohle,et al.  Human anterior intraparietal area subserves prehension , 1998, Neurology.

[12]  Richard S. J. Frackowiak,et al.  Multiple nonprimary motor areas in the human cortex. , 1997, Journal of neurophysiology.

[13]  G. Rizzolatti,et al.  Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey , 1985, Behavioural Brain Research.

[14]  Scott T. Grafton,et al.  Functional anatomy of pointing and grasping in humans. , 1996, Cerebral cortex.

[15]  Christian Bohm,et al.  Somatosensory Discrimination of Shape: Tactile Exploration and Cerebral Activation , 1991, The European journal of neuroscience.

[16]  H. Sakata,et al.  Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. , 1995, Cerebral cortex.

[17]  G. Rizzolatti,et al.  Afferent and efferent projections of the inferior area 6 in the macaque monkey , 1986, The Journal of comparative neurology.

[18]  G. Rizzolatti,et al.  Activation of precentral and mesial motor areas during the execution of elementary proximal and distal arm movements: a PET study. , 1993, Neuroreport.

[19]  R. Caselli,et al.  Rediscovering tactile agnosia. , 1991, Mayo Clinic proceedings.