A 261-µW ultra-low power RF mixer with 26-dBm IIP3 using complementary pre-distortion technique for IEEE 802.15.4 applications

Abstract The wireless mobile communication is being replaced by wireless personal communication due to the advent of the Internet-of-things (IoT). The IoT applications in the 2.4 GHz band face critical trade-off with respect to signal linearity and battery power. The IoT devices require more power to overcome the nonlinear effects in the channel, resulting in rapid discharge of battery. The wireless industry faces a challenge of providing proper signal processing without draining the battery drastically. In this paper, an ultra-low power RF mixer using complementary pre-distortion (CPD) technique is proposed to overcome the trade-off between linearity and power consumption. The proposed CPD based mixer is designed in UMC 180 nm CMOS process, and the post layout simulations using Cadence SpectreRF tool shows an IIP3 of 26.36 dBm and an IIP2 of 137.1 dBm while consuming only 261.6 µW from a 1-V supply. The proposed CPD method gives the better linearity per mW ratio when compared to other recently proposed mixer circuits. The proposed mixer also provides a gain of 11.45 dB while contributing a very low double-sideband noise figure (DSB-NF) of 8.5 dB. The CPD based mixer has a spurious free dynamic range (SFDR) of 91.57 dB which is 10 dB higher than the recently proposed RF front-end while occupying a core area of 0.33 mm2.

[1]  Ruifeng Liu,et al.  A 5.8 GHz Digitally Controlled CMOS Receiver With a Wide Dynamic Range for Chinese ETC System , 2018, IEEE Transactions on Circuits and Systems II: Express Briefs.

[2]  Sang-Gug Lee,et al.  Building a 2.4-GHZ radio transceiver using IEEE 802.15.4 , 2006, IEEE Circuits and Devices Magazine.

[3]  C. E. Saavedra,et al.  An Ultra-Low-Voltage and Low-Power $\times$2 Subharmonic Downconverter Mixer , 2012, IEEE Transactions on Microwave Theory and Techniques.

[4]  H.C. Luong,et al.  A Linearization Technique for RF Receiver Front-End Using Second-Order-Intermodulation Injection , 2008, IEEE Journal of Solid-State Circuits.

[5]  R. A. Baki,et al.  Distortion in RF CMOS short-channel low-noise amplifiers , 2005, IEEE Transactions on Microwave Theory and Techniques.

[6]  Sylvain Bourdel,et al.  Ultra low power and high gain switched CMOS gm-boosted current reused mixer for wireless multi-standard applications , 2014, Microelectron. J..

[7]  Quan Xue,et al.  A Low-Voltage Folded-Switching Mixer Using Area-Efficient CCG Transconductor , 2017, IEEE Transactions on Circuits and Systems II: Express Briefs.

[8]  R.G. Meyer,et al.  Intermodulation distortion in current-commutating CMOS mixers , 2000, IEEE Journal of Solid-State Circuits.

[9]  Chunhua Wang,et al.  Design of a Low Voltage Highly Linear 2.4 GHz Up-Conversion Mixer in 0.18 μm CMOS Technology , 2013, Wirel. Pers. Commun..

[10]  Byung-Sung Kim,et al.  Post-linearization of cascode CMOS low noise amplifier using folded PMOS IMD sinker , 2006 .

[11]  Abdolreza Nabavi,et al.  Design of an active CMOS subharmonic mixer with enhanced transconductance , 2017 .

[12]  L. Larson,et al.  Modified derivative superposition method for linearizing FET low-noise amplifiers , 2004, IEEE Transactions on Microwave Theory and Techniques.

[13]  San-Fu Wang,et al.  Low power up-conversion mixer with gain control function , 2016 .

[14]  Chua-Chin Wang,et al.  A 19.38 dBm OIP3 gm-boosted up-conversion CMOS mixer for 5-6 GHz application , 2017, Microelectron. J..

[15]  Darshak Bhatt,et al.  A Self-Biased Mixer in $0.18\mu \text{m}$ CMOS for an Ultra-Wideband Receiver , 2017, IEEE Transactions on Microwave Theory and Techniques.

[16]  Shahriar Mirabbasi,et al.  On the use of body biasing to improve linearity in low LO-power CMOS active mixers , 2014, Microelectron. J..

[17]  B. Bastani,et al.  A high IIP2 downconversion mixer using dynamic matching , 2000, IEEE Journal of Solid-State Circuits.

[18]  Pui-In Mak,et al.  A 0.35-V 520- $\mu \text{W}$ 2.4-GHz Current-Bleeding Mixer With Inductive-Gate and Forward-Body Bias, Achieving >13-dB Conversion Gain and >55-dB Port-to-Port Isolation , 2017, IEEE Transactions on Microwave Theory and Techniques.

[19]  Ilku Nam,et al.  A Wideband CMOS Low Noise Amplifier Employing Noise and IM2 Distortion Cancellation for a Digital TV Tuner , 2009, IEEE J. Solid State Circuits.

[20]  Razavi A 900-MHz CMOS Direct Conversion Receiver , 1997, Symposium 1997 on VLSI Circuits.

[21]  Jean-Michel Redoute,et al.  Low-Power Linear Bulk-Injection Mixer for Wide-Band Applications , 2016, IEEE Microwave and Wireless Components Letters.

[22]  Robert G. Meyer,et al.  Noise in current-commutating CMOS mixers , 1999, IEEE J. Solid State Circuits.

[23]  Behzad Razavi,et al.  Design considerations for direct-conversion receivers , 1997 .

[24]  B. Nauta,et al.  Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling , 2008, IEEE Journal of Solid-State Circuits.

[25]  Robert G. Meyer,et al.  A systematic approach to the analysis of noise in mixers , 1993 .

[26]  Carlos E. Saavedra,et al.  Linearization of Active Downconversion Mixers at the IF Using Feedforward Cancellation , 2019, IEEE Transactions on Circuits and Systems I: Regular Papers.

[27]  Asad A. Abidi Direct-conversion radio transceivers for digital communications , 1995 .

[28]  Hui Zhou,et al.  A Complementary Current-Mirror-Based Bulk-Driven Down-Conversion Mixer for Wideband Applications , 2018, Circuits Syst. Signal Process..

[29]  Jun-Da Chen A low-voltage high-linearity ultra-wideband down-conversion mixer in 0.18-µm CMOS technology , 2011, Microelectron. J..

[30]  Abdolreza Nabavi,et al.  Low-power highly linear UWB CMOS mixer with simultaneous second- and third-order distortion cancellation , 2010, Microelectron. J..

[31]  A.A. Abidi,et al.  Noise in RF-CMOS mixers: a simple physical model , 2000, IEEE Journal of Solid-State Circuits.

[32]  Meng Zhang,et al.  A 1.5-V Current Mirror Double-Balanced Mixer With 10-dBm IIP3 and 9.5-dB Conversion Gain , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.

[33]  Michiel Steyaert,et al.  Low-IF topologies for high-performance analog front ends of fully integrated receivers , 1998 .

[34]  Abumoslem Jannesari,et al.  Pre-distortion technique to improve linearity of low noise amplifier , 2017, Microelectron. J..

[35]  Bumman Kim,et al.  Linearity analysis of CMOS for RF application , 2002, IMS 2002.

[36]  Myoung-Gyun Kim,et al.  Analysis and Design of Feedforward Linearity-Improved Mixer Using Inductive Source Degeneration , 2014, IEEE Transactions on Microwave Theory and Techniques.

[37]  Lv Zhao,et al.  A Novel Low Voltage Low Power High Linearity Self-biasing Current-reuse Up-conversion Mixer , 2015, Wirel. Pers. Commun..

[38]  Bing Wang,et al.  MOSFET thermal noise modeling for analog integrated circuits , 1994 .

[39]  Leonid Belostotski,et al.  Noise Parameters of Gilbert Cell Mixers , 2016, IEEE Transactions on Microwave Theory and Techniques.

[40]  Yan Yao,et al.  A 1V 1.4 mW multi-band ZigBee receiver with 64 dB SFDR , 2018, Microelectron. J..

[41]  Kari Halonen,et al.  Characterization of IIP2 and DC-offsets in transconductance mixers , 2001 .

[42]  Mohammad Yavari,et al.  A Wideband High Linearity and Low-Noise CMOS Active Mixer Using the Derivative Superposition and Noise Cancellation Techniques , 2019, Circuits Syst. Signal Process..

[43]  Willy Sansen,et al.  Distortion in elementary transistor circuits , 1999 .

[44]  A. A. Abidi,et al.  General relations between IP2, IP3, and offsets in differential circuits and the effects of feedback , 2003 .

[45]  Edgar Sánchez-Sinencio,et al.  A linearization technique for RF low noise amplifier , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[46]  Bonkee Kim,et al.  A 13-dB IIP3 improved low-power CMOS RF programmable gain amplifier using differential circuit transconductance linearization for various terrestrial mobile D-TV applications , 2006 .

[47]  Jie Jin Resonant amplifier-based sub-harmonic mixer for zero-IF transceiver applications , 2017, Integr..

[48]  V. Aparin,et al.  Effect of out-of-band terminations on intermodulation distortion in common-emitter circuits , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[49]  Yuhua Cheng,et al.  High-frequency characterization and modeling of distortion behavior of MOSFETs for RF IC design , 2004 .

[50]  Jian Xu,et al.  A 1-V Current-Reused Wideband Current-Mirror Mixer in 180-nm CMOS with High IIP2 , 2017, Circuits Syst. Signal Process..

[51]  Mohammad Yavari,et al.  An IIP3 enhancement technique for CMOS active mixers with a source-degenerated transconductance stage , 2016, Microelectron. J..

[52]  S. Chrisben Gladson,et al.  A low power high-performance area efficient RF front-end exploiting body effect for 2.4 GHz IEEE 802.15.4 applications , 2018 .

[53]  Hossein Miar Naimi,et al.  Design and Analysis of a Highly Efficient Linearized CMOS Subharmonic Mixer for Zero and Low-IF Applications , 2016, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[54]  Kiat Seng Yeo,et al.  A Weak-Inversion Low-Power Active Mixer for 2.4 GHz ISM Band Applications , 2009, IEEE Microwave and Wireless Components Letters.

[55]  Ji-Young Lee,et al.  Low-Flicker-Noise and High-Gain Mixer Using a Dynamic Current-Bleeding Technique , 2017, IEEE Microwave and Wireless Components Letters.

[56]  Carlos E. Saavedra,et al.  Method to Improve the Linearity of Active Commutating Mixers Using Dynamic Current Injection , 2016 .

[57]  Robert G. Meyer,et al.  Cyclostationary noise in radio-frequency communication systems , 2002 .