Analysis of metallic nanoantennas for solar energy conversion

Recently thermo-electrical nanoantennas, also known as Seebeck nanoantennas, have been proposed as an alternative for solar energy harvesting applications. In this work we present the optical and thermal analysis of metallic nanoantennas operating at infrared wavelengths, this study is performed by numerical simulations using COMSOL Multiphysics. Several different nanoantenna designs were analyzed including dipoles, bowties and square spiral antennas. Results show that metallic nanoantennas can be tuned to absorb electromagnetic energy at infrared wavelengths, and that numerical simulation can be useful in optimizing the performance of these types of nanoantennas at optical and infrared wavelengths.

[1]  Attay Kovetz,et al.  The principles of electromagnetic theory , 1990 .

[2]  F. J. González,et al.  Comparison of dipole, bowtie, spiral and log-periodic IR antennas , 2005 .

[3]  G. Vandenbosch,et al.  Upper bounds for the solar energy harvesting efficiency of nano-antennas , 2012 .

[4]  R. Zane,et al.  Recycling ambient microwave energy with broad-band rectenna arrays , 2004, IEEE Transactions on Microwave Theory and Techniques.

[5]  Javier Alda,et al.  Seebeck nanoantennas for the detection and characterization of infrared radiation. , 2014, Optics express.

[6]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[7]  Sachit Grover,et al.  Graphene geometric diodes for terahertz rectennas , 2013 .

[8]  A. Abdel-azim Fundamentals of Heat and Mass Transfer , 2011 .

[9]  D. K. Kotter,et al.  Theory and Manufacturing Processes of Solar NanoAntenna Electromagnetic Collectors , 2010 .

[10]  Javier Alda,et al.  The effect of metal dispersion on the resonance of antennas at infrared frequencies , 2009 .

[11]  Wolfgang Porod,et al.  Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes , 2009 .

[12]  Javier Alda,et al.  Multiphysics simulation for the optimization of optical nanoantennas working as distributed bolometers in the infrared , 2013 .

[13]  L. Novotný,et al.  Antennas for light , 2011 .

[14]  G. Vineyard,et al.  Semiconductor Thermoelements and Thermoelectric Cooling , 1957 .

[15]  Guy A. E. Vandenbosch,et al.  Optimal solar energy harvesting efficiency of nano-rectenna systems , 2013 .

[16]  W. Porod,et al.  Antenna-Coupled Nanowire Thermocouples for Infrared Detection , 2013, IEEE Transactions on Nanotechnology.

[17]  P. Biagioni,et al.  Nanoantennas for visible and infrared radiation , 2011, Reports on progress in physics. Physical Society.

[18]  G. Gerlach,et al.  Review of micromachined thermopiles for infrared detection , 2007 .

[19]  W. Porod,et al.  Response Increase of IR Antenna-Coupled Thermocouple Using Impedance Matching , 2012, IEEE Journal of Quantum Electronics.

[20]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.

[21]  Javier Alda,et al.  Conversion efficiency of broad-band rectennas for solar energy harvesting applications. , 2013, Optics express.

[22]  Garret Moddel,et al.  Rectenna solar cells , 2013 .

[23]  D. Rowe Thermoelectrics Handbook , 2005 .

[24]  R. J. Bell,et al.  Optical properties of Au, Ni, and Pb at submillimeter wavelengths. , 1987, Applied optics.