A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz

In this paper, a new S-shaped piezoelectric PZT cantilever is microfabricated for scavenging vibration energy at low frequencies (<30 Hz) and low accelerations (<0.4g). The maximum voltage and normalized power are 42 mV and 0.31 μW g−2, respectively, at input acceleration of 0.06g. For acceleration above 0.06g, the vibration of PZT cantilever changes from a linear oscillation to a nonlinear impact oscillation due to the displacement constraint introduced by a mechanical stopper. Based on theoretical modeling and experimental results, the frequency broadening effect of the PZT cantilever is studied with varying stop distances and input accelerations. The operation bandwidth of the piezoelectric PZT cantilever is able to extend from 3.4 to 11.1 Hz as the stop distance reduces from 1.7 to 0.7 mm for an acceleration of 0.3g, at the expense of the voltage and normalized power at resonance decreasing from 40 to 16 mV and from 17.8 to 2.8 nW g−2, respectively.

[1]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[2]  Jan M. Rabaey,et al.  Energy scavenging for wireless sensor networks , 2003 .

[3]  T.C. Green,et al.  Architectures for vibration-driven micropower generators , 2004, Journal of Microelectromechanical Systems.

[4]  R. Jazar,et al.  Comparison of Exact and Approximate Frequency Response of a Piecewise Linear Vibration Isolator , 2005 .

[5]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[6]  Joseph A. Paradiso,et al.  Human Generated Power for Mobile Electronics , 2004 .

[7]  P. Wright,et al.  Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload , 2006 .

[8]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[9]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[10]  S.G. Burrow,et al.  A Resonant Generator with Non-Linear Compliance for Energy Harvesting in High Vibrational Environments , 2007, 2007 IEEE International Electric Machines & Drives Conference.

[11]  Robert Puers,et al.  Fabrication, modelling and characterization of MEMS piezoelectric vibration harvesters , 2008 .

[12]  Y. Tai,et al.  Iop Publishing Journal of Micromechanics and Microengineering Parylene-based Electret Power Generators , 2022 .

[13]  Ehab F. El-Saadany,et al.  A wideband vibration-based energy harvester , 2008 .

[14]  Di Chen,et al.  A MEMS-based piezoelectric power generator array for vibration energy harvesting , 2008, Microelectron. J..

[15]  Tuna Balkan,et al.  An electromagnetic micro power generator for wideband environmental vibrations , 2008 .

[16]  Kai Zhang,et al.  A FREQUENCY ADJUSTABLE VIBRATION ENERGY HARVESTER , 2008 .

[17]  M. G. Prasad,et al.  A vibration energy harvesting device with bidirectional resonance frequency tunability , 2008 .

[18]  Huan Xue,et al.  Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[19]  Timothy C. Green,et al.  Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices , 2008, Proceedings of the IEEE.

[20]  Jiashi Yang,et al.  Analysis of Rosen piezoelectric transformers with a varying cross-section , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[21]  Jae Wan Kwon,et al.  A micromachined energy harvester from a keyboard using combined electromagnetic and piezoelectric conversion , 2008 .

[22]  S. Basrour,et al.  MEMS Vibration Energy Harvesting Devices With Passive Resonance Frequency Adaptation Capability , 2009, Journal of Microelectromechanical Systems.

[23]  Y. V. Andel,et al.  Vibration energy harvesting with aluminum nitride-based piezoelectric devices , 2009 .

[24]  S. H. Kim,et al.  Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting , 2009 .

[25]  C. K. Lee,et al.  Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film , 2009 .

[26]  Y. Naruse,et al.  Electrostatic micro power generation from low-frequency vibration such as human motion , 2009 .

[27]  Srinivas Tadigadapa,et al.  Piezoelectric MEMS sensors: state-of-the-art and perspectives , 2009 .

[28]  H. Kulah,et al.  An Electromagnetic Micro Power Generator for Low Frequency Environmental Vibrations based on the Frequency Up-Conversion Technique , 2009, 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems.

[29]  J. Park,et al.  Modeling and Characterization of Piezoelectric $d_{33}$ -Mode MEMS Energy Harvester , 2010, Journal of Microelectromechanical Systems.

[30]  Dibin Zhu,et al.  Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator , 2010 .

[31]  Einar Halvorsen,et al.  A piezoelectric energy harvester with a mechanical end stop on one side , 2010, 2010 Symposium on Design Test Integration and Packaging of MEMS/MOEMS (DTIP).

[32]  Hakan Urey,et al.  FR4-based electromagnetic energy harvester for wireless sensor nodes , 2010 .

[33]  Chengkuo Lee,et al.  Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms , 2010 .

[34]  이윤표,et al.  Modeling and Characterization of Piezoelectric d(33)-Mode MEMS Energy Harvester , 2010 .

[35]  Duy Son Nguyen,et al.  Nonlinear Behavior of an Electrostatic Energy Harvester Under Wide- and Narrowband Excitation , 2010, Journal of Microelectromechanical Systems.

[36]  Chengkuo Lee,et al.  Non-resonant electromagnetic wideband energy harvesting mechanism for low frequency vibrations , 2010 .

[37]  E. Halvorsen,et al.  Nonlinear Springs for Bandwidth-Tolerant Vibration Energy Harvesting , 2011, Journal of Microelectromechanical Systems.

[38]  Peter Woias,et al.  A smart and self-sufficient frequency tunable vibration energy harvester , 2011 .

[39]  Chengkuo Lee,et al.  A scrape-through piezoelectric MEMS energy harvester with frequency broadband and up-conversion behaviors , 2011 .

[40]  Lei Gu,et al.  Low-frequency piezoelectric energy harvesting prototype suitable for the MEMS implementation , 2011, Microelectron. J..

[41]  Othman Sidek,et al.  A review of vibration-based MEMS piezoelectric energy harvesters , 2011 .

[42]  Tao Dong,et al.  Modeling and experimental verification of low-frequency MEMS energy harvesting from ambient vibrations , 2011 .

[43]  Chengkuo Lee,et al.  Piezoelectric MEMS Energy Harvester for Low-Frequency Vibrations With Wideband Operation Range and Steadily Increased Output Power , 2011, Journal of Microelectromechanical Systems.

[44]  Sang-Gook Kim,et al.  Ultra-wide bandwidth piezoelectric energy harvesting , 2011 .

[45]  T. Galchev,et al.  Micro Power Generator for Harvesting Low-Frequency and Nonperiodic Vibrations , 2011, Journal of Microelectromechanical Systems.

[46]  Jan M. Rabaey,et al.  Energy Scavenging for Wireless Sensor Networks: with Special Focus on Vibrations , 2012 .