Scale formation mechanisms of martensitic steels in high CO2/H2O-containing gases simulating oxyfuel environments

Abstract In oxyfuel power plants, metallic components will be exposed to service environments containing high amounts of CO2 and water vapour. Therefore, the oxidation behaviour of a number of martensitic 9–12%Cr steels in a model gas mixture containing 70% CO2–30% H2O was studied in the temperature range 550–700°C. The results were compared with the behaviour in air, Ar–CO2 and Ar–H2O. It was found that in the CO2- and/or H2O-rich gases, the mentioned steels tended to form iron-rich oxide scales with significantly higher growth rates than the Cr-rich surface scales formed during air exposure. The iron-rich scales were formed as a result of a decreased flux of chromium in the bulk alloy toward the surface because of enhanced internal oxidation of chromium in the H2O-containing gases and carbide formation in the CO2-rich gases. Additionally, the presence of water vapour in the exposure atmosphere led to buckling of the outer haematite layer, apparently as a result of compressive oxide growth stresses. The Fe-base oxide scales formed in CO2(–H2O)-rich gases appeared to be permeable to CO2 molecules resulting in substantial carburization of the steel.

[1]  G. Wood,et al.  International Workshop on High-Temperature Corrosion , 1996 .

[2]  G. H. Meier,et al.  Corrosion of iron-, nickel-, and cobalt-base alloys in atmospheres containing carbon and oxygen , 1982 .

[3]  L. Singheiser,et al.  Enhanced internal oxidation as trigger for breakaway oxidation of Fe–Cr alloys in gases containing water vapor , 2007 .

[4]  D. Young,et al.  Carburization resistance of nickel-base, heat-resisting alloys , 2007 .

[5]  A. Rahmel,et al.  Einfluß von Wasserdampf und Kohlendioxyd auf die Oxydation von Eisen-Silicium-Legierungen in Sauerstoff bei Temperaturen von 750 bis 1050°C , 1965 .

[6]  F. Pettit,et al.  Introduction to the high-temperature oxidation of metals , 2006 .

[7]  W. Quadakkers,et al.  The Effect of Water Vapor on Selective Oxidation of Fe–Cr Alloys , 2008 .

[8]  Jeffery A. Colwell,et al.  Reactions of Fe-Cr and Ni-Cr alloys in CO/CO2 gases at 850 and 950 °C , 1986 .

[9]  Willem J. Quadakkers,et al.  Korrosionsverhalten von ferritischen und austenitischen Stählen in simulierten Rauchgasen von stein- und braunkohlebefeuerten Kraftwerken , 1997 .

[10]  Toni Pikkarainen,et al.  Oxyfuel concept development , 2007 .

[11]  A. Rahmel Über den Einfluß von Wasserdampf und Kohlendioxyd auf die Oxydation von Eisen und Eisenlegierungen bei hohen Temperaturen , 1965 .

[12]  R. Ehlers,et al.  Oxidation von ferritischen 9 - 12 % Cr-Stählen in wasserdampfhaltigen Atmosphären bei 550 bis 650 C , 2001 .

[13]  F. Ajersch,et al.  Oxidation of low carbon steel in multicomponent gases: Part I. Reaction mechanisms during isothermal oxidation , 1997 .

[14]  W. Quadakkers,et al.  Steam oxidation of ferritic steels – laboratory test kinetic data , 2005 .

[15]  G. B. Gibbs A model for mild steel oxidation in CO2 , 1973 .

[16]  W. J. Quadakkers,et al.  Implications of steam oxidation for the service life of high-strength martensitic steel components in high-temperature plant , 2007 .

[17]  L. Singheiser,et al.  Effect of Alloying Additions in Ferritic 9-12%Cr Steels on the Temperature Dependence of the Steam Oxidation Resistance , 2004 .

[18]  Jan-Erik Svensson,et al.  Evidence for Chromium Evaporation Influencing the Oxidation of 304L: The Effect of Temperature and Flow Rate , 2002 .

[19]  Marie Anheden,et al.  Oxyfuel combustion for coal-fired power generation with CO2 capture—Opportunities and challenges , 2005 .

[20]  Willem J. Quadakkers,et al.  Anomalous temperature dependence of oxidation kinetics during steam oxidation of ferritic steels in the temperature range 550–650 °C , 2004 .

[21]  R. Bredesen,et al.  On the oxidation of iron in CO2+CO gas mixtures: I. Scale morphology and reaction kinetics , 1990 .

[22]  F. Pettit,et al.  Corrosion of metals and alloys in mixed gas environments at elevated temperatures , 1980 .

[23]  L. Singheiser,et al.  Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments , 2006 .

[24]  RajenderKumar Gupta,et al.  Oxy-fuel combustion technology for coal-fired power generation , 2005 .

[25]  M. Schütze,et al.  Parameters determining the breakaway oxidation behaviour of ferritic martensitic 9%Cr steels in environments containing H2O , 2004 .

[26]  W. J. Quadakkers,et al.  Mechanisms of steam oxidation in high strength martensitic steels , 2007 .

[27]  S. Wiederhorn Moisture assisted crack growth in ceramics , 1968 .

[28]  M. Limbäck,et al.  Gas phase analysis of CO interactions with solid surfaces at high temperatures , 2004 .

[29]  H. Grabke THE USE OF ISOTOPE EXCHANGE REACTIONS FOR THE STUDY OF OXYGEN TRANSFER FROM H2O AND FROM CO2 TO METALS AND OXIDES , 1973, Annals of the New York Academy of Sciences.

[30]  X. G. Zheng,et al.  High-temperature corrosion of Cr2O3-forming alloys in CO-CO2-N2 atmospheres , 1994 .

[31]  A. Rahmel,et al.  Einfluss von wasserdampf und kohlendioxyd auf die oxydation von eisen in sauerstoff bei hohen temperaturen , 1965 .

[32]  A. Galerie,et al.  The Kinetic Behaviour of Metals in Water Vapour at High Temperatures: Can General Rules Be Proposed? , 2001 .

[33]  J. Antill,et al.  Oxidation of mild and low-alloy steels in CO2 based atmospheres , 1968 .

[34]  H. Grabke,et al.  Aufkohlung von chrom-nickel-eisen-stählen in der kohlenstoffpackung , 1976 .

[35]  Hugh Evans,et al.  Spallation models and their relevance to steam-grown oxides , 2005 .

[36]  Willem J. Quadakkers,et al.  The oxidation behaviour of the 9 % Cr steel P92in CO2- and H2O-rich gases relevant to oxyfuel environments , 2010 .