Effect of γ and γ ′ former doping on ductility of Ni3Al

[1]  D. Srolovitz,et al.  A kinetic criterion for quasi-brittle fracture , 1989 .

[2]  M. Enomoto,et al.  Analysis of γ′/γ equilibrium in Ni−Al−X alloys by the , 1989, Metallurgical and Materials Transactions A.

[3]  J. Hosson,et al.  Atomic structure of stoichiometric and non-stoichiometric grain boundaries in A3B compounds with L12 structure , 1988 .

[4]  H. Frost Grain boundary structure and the effect of boron in Ni3Al , 1988 .

[5]  M. Yoo,et al.  On the availability of dislocation reactions at grain boundaries in cubic ordered alloys , 1987 .

[6]  A. Taub,et al.  Composition dependence of ductility in boron-doped, nickel-base L12 alloys , 1987 .

[7]  E. Schulson,et al.  In-situ straining of Ni3Al in a transmission electron microscope , 1987 .

[8]  J. Hack,et al.  A model for the fracture behavior of polycrystalline Ni3Al , 1986 .

[9]  T. P. Weihs,et al.  Grain boundary accommodation of slip in Ni3Al containing boron , 1986 .

[10]  O. Izumi,et al.  Application of the selected area channeling pattern method to the study of intergranular fracture in Ni3Al , 1986 .

[11]  T. Takasugi,et al.  Electronic and structural studies of grain boundary strength and fracture in L12 ordered alloys—I. On binary A3B alloys , 1985 .

[12]  T. Takasugi,et al.  Electronic and structural studies of grain boundary strength and fracture in Ll2 ordered alloys—II. On the effect of third elements in Ni3Al alloy , 1985 .

[13]  T. Masumoto,et al.  Grain boundary fracture of L12 type intermetallic compound Ni3Ai , 1985 .

[14]  C. L. White,et al.  Effect of boron on grain-boundaries in Ni3Al† , 1985 .

[15]  D. Davidson,et al.  Flow localization accompanying the intergranular fracture of Ni3Al , 1983 .