Viscous Effects on Polar Vibrations in Microtubules

Microtubules form a fundamental organization structure in the cytoskeleton of the cell. Electrical polarity and high deformability at low stress are important physical properties of microtubules. Ions from the cytosol are attracted to tubulin heterodimers with electric dipoles and create a charge layer around the surface of the microtubule. Because of the slip boundary conditions in the surface layers of the microtubule and in the adjacent charge layer dissipative effects of viscous damping on vibrations are diminished. At the frequency 10 MHz the relaxation time may be more than 100 times greater than the period of oscillations. Energy supplied by hydrolysis of GTP (guanosine triphosphate) to GDP (guanosine diphosphate) in the β‐tubulins might, therefore, excite vibrations in microtubular structures.

[1]  T. Misteli The concept of self-organization in cellular architecture , 2001, The Journal of cell biology.

[2]  G. C. Rogers,et al.  Mitosis, microtubules, and the matrix , 2001, The Journal of cell biology.

[3]  W. Duncan-Hewitt,et al.  Four-layer theory for the acoustic shear wave sensor in liquids incorporating interfacial slip and liquid structure , 1992 .

[4]  P. Janmey,et al.  Viscoelastic properties of vimentin compared with other filamentous biopolymer networks , 1991, The Journal of cell biology.

[5]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[6]  Francesco Ferrante,et al.  Molecular slip at the solid‐liquid interface of an acoustic‐wave sensor , 1994 .

[7]  Jiří Pokorný,et al.  Electric field around microtubules , 1998 .

[8]  Batrouni,et al.  Fermion sign problem: Decoupling transformation and simulation algorithm. , 1992, Physical review. B, Condensed matter.

[9]  K. Kanazawa,et al.  Physical description of a viscoelastically loaded AT‐cut quartz resonator , 1990 .

[10]  H. Fröhlich,et al.  Bose condensation of strongly excited longitudinal electric modes , 1968 .

[11]  Georg E. Schulz,et al.  Principles of Protein Structure , 1979 .

[12]  L. W.,et al.  The Theory of Sound , 1898, Nature.

[13]  L. Marton,et al.  Advances in Electronics and Electron Physics , 1958 .

[14]  G. Hayward,et al.  A TRANSVERSE SHEAR MODEL OF A PIEZOELECTRIC CHEMICAL SENSOR , 1998 .

[15]  J A Tuszynski,et al.  Analysis of the migration behaviour of single microtubules in electric fields. , 2002, Biochemical and biophysical research communications.

[16]  Tuszynski,et al.  Kinklike excitations as an energy-transfer mechanism in microtubules. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Jiří Hašek,et al.  ELECTROMAGNETIC ACTIVITY OF YEAST CELLS IN THE M PHASE , 2001 .

[18]  C. Wiggins,et al.  Trapping and wiggling: elastohydrodynamics of driven microfilaments. , 1997, Biophysical journal.

[19]  M. Caplow,et al.  Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules. , 1996, Molecular biology of the cell.

[20]  M. Kirschner,et al.  Dynamic instability of microtubule growth , 1984, Nature.

[21]  Jack A. Tuszynski,et al.  Ferroelectric behavior in microtubule dipole lattices: Implications for information processing, signaling and assembly/disassembly* , 1995 .

[22]  J. Pokorný,et al.  Conditions for coherent vibrations in the cytoskeleton. , 1999, Bioelectrochemistry and bioenergetics.

[23]  Jiří Pokorný,et al.  Biophysical aspects of coherence and biological order. , 1998 .

[24]  A C Maggs,et al.  Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuations. , 1994, The Journal of biological chemistry.

[25]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[26]  J. Gordon,et al.  The oscillation frequency of a quartz resonator in contact with liquid , 1985 .

[27]  I. G. Currie Fundamental mechanics of fluids , 1974 .

[28]  H. Fröhlich,et al.  The Biological Effects of Microwaves and Related Questions , 1980 .

[29]  Frank Moss,et al.  What is biological physics , 1997 .

[30]  T. Mitchison,et al.  Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence , 1989, The Journal of cell biology.

[31]  Kenneth R. Foster,et al.  Viscous Damping of Vibrations in Microtubules , 2000, Journal of biological physics.

[32]  K. Luby-Phelps,et al.  Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. , 2000, International review of cytology.

[33]  M. Caplow,et al.  The free energy for hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice [published erratum appears in J Cell Biol 1995 Apr;129(2):549] , 1994, The Journal of cell biology.

[34]  A. Hyman,et al.  Modulation of microtubule stability by kinetochores in vitro , 1990, The Journal of cell biology.

[35]  A. Klug,et al.  Arrangement of subunits in flagellar microtubules. , 1974, Journal of cell science.

[36]  M. Carlier,et al.  Direct evidence for GTP and GDP-Pi intermediates in microtubule assembly. , 1990, Biochemistry.