A REVIEW AND COMPARISON OF SOLUTION APPROACHES

[1]  L. V. Wassenhove,et al.  Multilevel capacitated lotsizing complexity and LP-based heuristics , 1991 .

[2]  Marc Salomon,et al.  Statistical search methods for lotsizing problems , 1993, Ann. Oper. Res..

[3]  A. Kimms Competitive Methods for Multi-Level Lot Sizing and Scheduling: Tabu Search and Randomized Regrets. , 1996 .

[4]  Mathieu Van Vyve,et al.  Lot-sizing with fixed charges on stocks: the convex hull , 2004, Discret. Optim..

[5]  M. Lambrecht,et al.  A capacity constrained single-facility dynamic lot-size model , 1978 .

[6]  L. V. Wassenhove,et al.  Set partitioning and column generation heuristics for capacitated dynamic lotsizing , 1990 .

[7]  Jatinder N. D. Gupta,et al.  Determining lot sizes and resource requirements: A review , 1987 .

[8]  Dirk Cattrysse,et al.  A dual ascent and column generation heuristic for the discrete lotsizing and scheduling problem with setup times , 1993 .

[9]  Martin W. P. Savelsbergh,et al.  On the polyhedral structure of a multi–item production planning model with setup times , 2003, Math. Program..

[10]  Laurence A. Wolsey,et al.  Solving Multi-Item Lot-Sizing Problems with an MIP Solver Using Classification and Reformulation , 2002, Manag. Sci..

[11]  Harish C. Bahl,et al.  Capacitated lot-sizing and scheduling by Lagrangean relaxation , 1992 .

[12]  David F. Pyke,et al.  Inventory management and production planning and scheduling , 1998 .

[13]  Colin R. Reeves,et al.  Genetic Algorithms for the Operations Researcher , 1997, INFORMS J. Comput..

[14]  Miguel Constantino,et al.  A cutting plane approach to capacitated lot-sizing with start-up costs , 1996, Math. Program..

[15]  Reha Uzsoy,et al.  Experimental Evaluation of Heuristic Optimization Algorithms: A Tutorial , 2001, J. Heuristics.

[16]  Luk N. Van Wassenhove,et al.  A simple heuristic for the multi item single level capacitated lotsizing problem , 1986 .

[17]  M. V. Vyve,et al.  Algorithms for single item constant capacity lotsizing problems , 2003 .

[18]  Harish C. Bahl,et al.  A Lagrangean Relaxation Approach for Very-Large-Scale Capacitated Lot-Sizing , 1992 .

[19]  Mark A. McKnew,et al.  A Technique for Order Placement and Sizing , 1990 .

[20]  W. J. Selen,et al.  Operational production planning in a chemical manufacturing environment , 1990 .

[21]  Laurence A. Wolsey,et al.  Polyhedra for lot-sizing with Wagner—Whitin costs , 1994, Math. Program..

[22]  W. Brüggemann,et al.  DLSP for two-stage multi-item batch production , 1994 .

[23]  Andreas Drexl,et al.  Sequential-analysis Based Randomized-regret-methods for Lot-sizing and Scheduling , 1996 .

[24]  Uday S. Karmarkar,et al.  The Deterministic Dynamic Product Cycling Problem , 1985, Oper. Res..

[25]  William W. Trigeiro A Simple Heuristic for Lot Sizing with Setup Times , 1989 .

[26]  Renato de Matta,et al.  Studying the effects of production loss due to setup in dynamic production scheduling , 1994 .

[27]  E. Newson Multi-Item Lot Size Scheduling by Heuristic Part I: With Fixed Resources , 1975 .

[28]  B. Fleischmann The discrete lot-sizing and scheduling problem with sequence-dependent setup costs , 1994 .

[29]  Laurence A. Wolsey,et al.  MIP modelling of changeovers in production planning and scheduling problems , 1997 .

[30]  William W. Trigeiro,et al.  Capacitated lot sizing with setup times , 1989 .

[31]  Willard I. Zangwill,et al.  A Deterministic Multiproduct, Multi-Facility Production and Inventory Model , 1966, Oper. Res..

[32]  H. O. Gu¨nther Planning lot sizes and capacity requirements in a single stage production system , 1987 .

[33]  B. P. Dzielinski,et al.  Optimal Programming of Lot Sizes, Inventory and Labor Allocations , 1965 .

[34]  Laurence A. Wolsey,et al.  Valid Inequalities for the Lasdon-Terjung Production Model , 1992 .

[35]  Ke Ding,et al.  A Tabu-Search Heuristic for the Capacitated Lot-Sizing Problem with Set-up Carryover , 2001, Manag. Sci..

[36]  Laurence A. Wolsey,et al.  Progress With Single-item Lot-sizing , 1995 .

[37]  L. J. Thomas,et al.  Efficient Solutions to a Linear Programming Model for Production Scheduling With Capacity Constraints and No Initial Stock , 1989 .

[38]  Richard A. Sandbothe,et al.  The capacitated dynamic lot-sizing problem with startup and reservation costs: A forward algorithm solution , 1991 .

[39]  M. Florian,et al.  DETERMINISTIC PRODUCTION PLANNING WITH CONCAVE COSTS AND CAPACITY CONSTRAINTS. , 1971 .

[40]  Laurence A. Wolsey,et al.  Algorithms and reformulations for lot sizing problems , 1994, Combinatorial Optimization.

[41]  M. Lambrecht,et al.  Heuristic Procedures for the Single Operation, Multi-Item Loading Problem , 1979 .

[42]  Marc Salomon,et al.  LINEAR PROGRAMMING, SIMULATED ANNEALING AND TABU SEARCH HEURISTICS FOR LOTSIZING IN BOTTLENECK ASSEMBLY SYSTEMS , 1993 .

[43]  Dong X. Shaw,et al.  An Algorithm for Single-Item Capacitated Economic Lot Sizing with Piecewise Linear Production Costs and General Holding Costs , 1998 .

[44]  Apm Wagelmans,et al.  Using geometric techniques to improve dynamic programming algorithms for the economic lot-sizing problem and extensions , 1994 .

[45]  Martin W. P. Savelsbergh,et al.  A multi-item production planning model with setup times: algorithms, reformulations, and polyhedral characterizations for a special case , 2003, Math. Program..

[46]  Hartmut Stadtler,et al.  Reformulations of the shortest route model for dynamic multi-item multi-level capacitated lotsizing , 1997 .

[47]  Laurence A. Wolsey,et al.  Strong Formulations for Multi-Item Capacitated Lot Sizing , 1984 .

[48]  Graham K. Rand,et al.  Inventory Management and Production Planning and Scheduling (Third Edition) , 2001, J. Oper. Res. Soc..

[49]  Rita Vachani,et al.  Performance of heuristics for the uncapacitated lot-size problem , 1992 .

[50]  Alf Kimms,et al.  Lot sizing and scheduling -- Survey and extensions , 1997 .

[51]  Hartmut Stadtler,et al.  Multilevel Lot Sizing with Setup Times and Multiple Constrained Resources: Internally Rolling Schedules with Lot-Sizing Windows , 2003, Oper. Res..

[52]  P. S. Eisenhut A Dynamic Lot Sizing Algorithm with Capacity Constraints , 1975 .

[53]  Hermann Jahnke,et al.  Remarks on: "Some Extensions of the Discrete Lotsizing and Scheduling Problem" , 1997 .

[54]  Marc Lambrecht,et al.  A facilities in series capacity constrained dynamic lot-size model , 1978 .

[55]  Ou Tang,et al.  Simulated annealing in lot sizing problems , 2004 .

[56]  Ömer Kirca An efficient algorithm for the capacitated single item dynamic lot size problem , 1990 .

[57]  L. V. Wassenhove,et al.  Some extensions of the discrete lotsizing and scheduling problem , 1991 .

[58]  Laurence A. Wolsey,et al.  Modelling Practical Lot-Sizing Problems as Mixed-Integer Programs , 2001, Manag. Sci..

[59]  Uday S. Karmarkar,et al.  The Dynamic Lot-Sizing Problem with Startup and Reservation Costs , 1987, Oper. Res..

[60]  Linet Özdamar,et al.  Analysis of solution space-dependent performance of simulated annealing: the case of the multi-level capacitated lot sizing problem , 2000, Comput. Oper. Res..

[61]  Linet Özdamar,et al.  Hybrid heuristics for the capacitated lot sizing and loading problem with setup times and overtime decisions , 1998, Eur. J. Oper. Res..

[62]  W. Zangwill A Backlogging Model and a Multi-Echelon Model of a Dynamic Economic Lot Size Production System---A Network Approach , 1969 .

[63]  Laurence A. Wolsey,et al.  Multi-item lot-sizing problems using strong cutting planes , 1991 .

[64]  K. Hindi Solving the single-item, capacitated dynamic lot-sizing problem with startup and reservation costs by tabu search , 1995 .

[65]  George B. Dantzig,et al.  Decomposition Principle for Linear Programs , 1960 .

[66]  Yi-Feng Hung,et al.  Using tabu search with ranking candidate list to solve production planning problems with setups , 2003, Comput. Ind. Eng..

[67]  James H. Bookbinder,et al.  Production planning for mixed assembly/arborescent systems , 1990 .

[68]  Martin W. P. Savelsbergh,et al.  Branch-and-Price: Column Generation for Solving Huge Integer Programs , 1998, Oper. Res..

[69]  Hartmut Stadtler,et al.  Mixed integer programming model formulations for dynamic multi-item multi-level capacitated lotsizing , 1996 .

[70]  S. Lippman Optimal inventory policy with multiple set-up costs , 1968 .

[71]  R. Kuik,et al.  Multi-level lot-sizing problem: Evaluation of a simulated-annealing heuristic , 1990 .

[72]  Jinxing Xie,et al.  Heuristic genetic algorithms for general capacitated lot-sizing problems☆ , 2002 .

[73]  Luk N. Van Wassenhove,et al.  Multi Item Single Level Capacitated Dynamic Lotsizing Heuristics: A Computational Comparison (Part II: Rolling Horizon) , 1986 .

[74]  Terry P. Harrison,et al.  Lot Sizing in General Assembly Systems with Setup Costs, Setup Times, and Multiple Constrained Resources , 1998 .

[75]  Thomas L. Magnanti,et al.  Facets and algorithms for capacitated lot sizing , 1989, Math. Program..

[76]  Horst Tempelmeier,et al.  A heuristic for dynamic multi-item multi-level capacitated lotsizing for general product structures , 1994 .

[77]  Alf Kimms,et al.  A genetic algorithm for multi-level, multi-machine lot sizing and scheduling , 1999, Comput. Oper. Res..

[78]  J Jaap Wessels,et al.  Multi item lot size determination and scheduling under capacity constraints , 1976 .

[79]  G. D. Eppen,et al.  Solving Multi-Item Capacitated Lot-Sizing Problems Using Variable Redefinition , 1987, Oper. Res..

[80]  Herbert Meyr,et al.  The general lotsizing and scheduling problem , 1997 .

[81]  Arianna Alfieri,et al.  LP-based heuristics for the capacitated lot-sizing problem: The interaction of model formulation and solution algorithm , 2002 .

[82]  G. Nemhauser,et al.  Solving Multi-Item Capacitated Lot-Sizing Problems with Setup Times by Branch-and-Cut , 2000 .

[83]  Harvey M. Wagner,et al.  Dynamic Version of the Economic Lot Size Model , 2004, Manag. Sci..

[84]  Luk N. Van Wassenhove,et al.  Capacitated Lot Sizing for Injection Moulding: A Case Study , 1983 .

[85]  Yi-Feng Hung,et al.  Evolutionary algorithms for production planning problems with setup decisions , 1999, J. Oper. Res. Soc..

[86]  Luk N. Van Wassenhove,et al.  Multi Item Single Level Capacitated Dynamic Lotsizing Heuristics: A Computational Comparison (Part I: Static Case) , 1986 .

[87]  Lotfi K. Gaafar,et al.  A neural network model for solving the lot-sizing problem , 2000 .

[88]  Laurence A. Wolsey,et al.  Uncapacitated Lot-Sizing Problems with Start-Up Costs , 1989, Oper. Res..

[89]  Stan P. M. van Hoesel,et al.  On the discrete lot-sizing and scheduling problem with Wagner-Whitin costs , 1997, Oper. Res. Lett..

[90]  Liqun Qi,et al.  Remarks On: Some Extenstions of the Discrete Lotsizing and Scheduling Problem , 1999 .

[91]  Linet Özdamar,et al.  An integrated Lagrangean relaxation-simulated annealing approach to the multi-level multi-item capacitated lot sizing problem , 2000 .

[92]  Ludo Gelders,et al.  Lot sizing under dynamic demand conditions: A review , 1984 .

[93]  Laurence A. Wolsey,et al.  Lot-size models with backlogging: Strong reformulations and cutting planes , 1988, Math. Program..

[94]  Linet Özdamar,et al.  Technical note: New results for the capacitated lot sizing problem with overtime decisions and setup times , 2002 .

[95]  Y. Roll,et al.  A Heuristic Algorithm for the Multi-Item Lot-Sizing Problem with Capacity Constraints , 1982 .

[96]  L Özdamar,et al.  Hybrid heuristics for the multi-stage capacitated lot sizing and loading problem , 1999, J. Oper. Res. Soc..

[97]  N. C. Simpson,et al.  Questioning the relative virtues of dynamic lot sizing rules , 2001, Comput. Oper. Res..

[98]  Raf Jans,et al.  An industrial extension of the discrete lot-sizing and scheduling problem , 2004 .

[99]  Yi-Feng Hung,et al.  Solving mixed integer programming production planning problems with setups by shadow price information , 1998, Comput. Oper. Res..

[100]  Hartmut Schmeck,et al.  Experiences with fine‐grainedparallel genetic algorithms , 1999, Ann. Oper. Res..

[101]  S. Selcuk Erenguc,et al.  Multiple‐stage production planning research: history and opportunities , 1996 .

[102]  J. Goffin,et al.  A Lagrangian Relaxation of the Capacitated Multi-Item Lot Sizing Problem Solved with an Interior Poi , 1997 .

[103]  Thomas L. Magnanti,et al.  Facets and Reformulations for Solving Production Planning With Changeover Costs , 2002, Oper. Res..

[104]  Herbert Meyr,et al.  Simultaneous lotsizing and scheduling by combining local search with dual reoptimization , 2000, Eur. J. Oper. Res..

[105]  Albert P. M. Wagelmans,et al.  Economic Lot Sizing: An O(n log n) Algorithm That Runs in Linear Time in the Wagner-Whitin Case , 1992, Oper. Res..

[106]  Zeger Degraeve,et al.  Improved lower bounds for the capacitated lot sizing problem with setup times , 2004, Oper. Res. Lett..

[107]  H. Tempelmeier,et al.  A Lagrangean-based heuristic for dynamic multilevel multiitem constrained lotsizing with setup times , 1996 .

[108]  Jully Jeunet,et al.  Randomized multi-level lot-sizing heuristics for general product structures , 2003, Eur. J. Oper. Res..

[109]  P. R. Kleindorfer,et al.  A Lower Bounding Structure for Lot-Size Scheduling Problems , 1975, Oper. Res..

[110]  Yves Pochet Valid inequalities and separation for capacitated economic lot sizing , 1988 .

[111]  Jully Jeunet,et al.  Solving large unconstrained multilevel lot-sizing problems using a hybrid genetic algorithm , 2000 .

[112]  Alain Hertz,et al.  Guidelines for the use of meta-heuristics in combinatorial optimization , 2003, Eur. J. Oper. Res..

[113]  Marc Salomon,et al.  Batching decisions: structure and models , 1994 .

[114]  Miguel Fragoso Constantino,et al.  Lotsizing with backlogging and start-ups: the case of Wagner-Whitin costs , 1999, Oper. Res. Lett..

[115]  Miguel Constantino,et al.  Lower Bounds in Lot-Sizing Models: A Polyhedral Study , 1998, Math. Oper. Res..

[116]  Gabriel R. Bitran,et al.  The Multi-Item Capacitated Lot Size Problem: Error Bounds of Manne's Formulations , 1986 .

[117]  E. Newson Multi-Item Lot Size Scheduling by Heuristic Part II: With Variable Resources , 1975 .

[118]  E. Silver,et al.  A heuristic solution procedure for the multi-item, single-level, limited capacity, lot-sizing problem , 1981 .

[119]  Laurence A. Wolsey,et al.  bc -- prod: A Specialized Branch-and-Cut System for Lot-Sizing Problems , 2000 .

[120]  Marc Salomon,et al.  The Single-Item Discrete Lotsizing and Scheduling Problem: Optimization by Linear and Dynamic Programming , 1994, Discret. Appl. Math..

[121]  J. K. Lenstra,et al.  Deterministic Production Planning: Algorithms and Complexity , 1980 .

[122]  W. Zangwill A Deterministic Multi-Period Production Scheduling Model with Backlogging , 1966 .

[123]  Laurence A. Wolsey,et al.  Dynamic knapsack sets and capacitated lot-sizing , 2003, Math. Program..

[124]  N. Adam,et al.  The Dynamic Lot-Sizing Problem for Multiple Items Under Limited Capacity , 1981 .

[125]  Yves Pochet,et al.  Mathematical Programming Models and Formulations for Deterministic Production Planning Problems , 2000, Computational Combinatorial Optimization.

[126]  Linet Özdamar,et al.  The capacitated lot sizing problem with overtime decisions and setup times , 2000 .

[127]  Albert P. M. Wagelmans,et al.  Fully Polynomial Approximation Schemes for Single-Item Capacitated Economic Lot-Sizing Problems , 2001, Math. Oper. Res..

[128]  Vinicius Amaral Armentano,et al.  A Heuristic for a Resource-capacitated Multi-stage Lot-sizing Problem with Lead Times , 1995 .

[129]  Laurence A. Wolsey,et al.  Lot-Sizing with Constant Batches: Formulation and Valid Inequalities , 1993, Math. Oper. Res..

[130]  L Van Wassenhove,et al.  Lagrangean Relaxation for the Multi-Item Capacitated Lot-Sizing Problem , 1985 .

[131]  M. Laguna A heuristic for production scheduling and inventory control in the presence of sequence-dependent setup times , 1999 .

[132]  Yi-Feng Hung,et al.  A multi-class multi-level capacitated lot sizing model , 2000, J. Oper. Res. Soc..

[133]  Terry P. Harrison,et al.  Lot Sizing in Serial Assembly Systems with Multiple Constrained Resources , 1996 .

[134]  Emile H. L. Aarts,et al.  A novel decomposition approach for on-line lot-sizing , 2000, Eur. J. Oper. Res..

[135]  Hermann Jahnke,et al.  The discrete lot-sizing and scheduling problem: Complexity and modification for batch availability , 2000, Eur. J. Oper. Res..

[136]  A. Federgruen,et al.  The dynamic lot-sizing model with backlogging: A simple o(n log n) algorithm and minimal forecast horizon procedure , 1993 .

[137]  Thomas L. Magnanti,et al.  A Strong Cutting Plane Algorithm for Production Scheduling with Changeover Costs , 1990, Oper. Res..

[138]  G. Bitran,et al.  Computational Complexity of the Capacitated Lot Size Problem , 1982 .

[139]  Nicolas Jonard,et al.  A genetic algorithm to solve the general multi-level lot-sizing problem with time-varying costs , 2000 .

[140]  U. Karmarkar,et al.  Computationally Efficient Optimal Solutions to the Lot-Sizing Problem in Multistage Assembly Systems , 1984 .

[141]  Leon S. Lasdon,et al.  An Efficient Algorithm for Multi-Item Scheduling , 1971, Oper. Res..

[142]  Albert P. M. Wagelmans,et al.  An $O(T^3)$ algorithm for the economic lot-sizing problem with constant capacities , 1993 .

[143]  Alok Aggarwal,et al.  Improved Algorithms for Economic Lot Size Problems , 1993, Oper. Res..

[144]  Joseph D. Blackburn,et al.  Improved heuristics for multistage requirements planning systems , 1982 .

[145]  B. Fleischmann The discrete lot-sizing and scheduling problem , 1990 .

[146]  Laurence A. Wolsey,et al.  Uncapacitated lot-sizing: The convex hull of solutions , 1984 .

[147]  Khalil S. Hindi,et al.  Solving the CLSP by a Tabu Search Heuristic , 1996 .

[148]  S. Axsäter Note-Performance Bounds for Lot Sizing Heuristics , 1985 .

[149]  Bezalel Gavish,et al.  Optimal Lot-Sizing Algorithms for Complex Product Structures , 1986, Oper. Res..

[150]  Hoesel van Cpm,et al.  A linear description of the discrete lot-sizing and scheduling problem , 1994 .

[151]  Terry P. Harrison,et al.  Lot-Sizing with Start-Up Times , 1998 .

[152]  Edward A. Silver,et al.  A heuristic algorithm for determining lot sizes of an item subject to regular and overtime production capacities , 1983 .

[153]  Jozef Maes,et al.  MULTI-ITEM LOTSIZING IN CAPACITATED MULTI-STAGE SERIAL SYSTEMS , 1994 .

[154]  Gabriel R. Bitran,et al.  Approximation Methods for the Uncapacitated Dynamic Lot Size Problem , 1984 .

[155]  Monique Guignard-Spielberg,et al.  Dynamic Production Scheduling for a Process Industry , 1994, Oper. Res..

[156]  Alan S. Manne,et al.  Programming of Economic Lot Sizes , 1958 .

[157]  Moustapha Diaby,et al.  Efficient post-optimization analysis procedure for the dynamic lot-sizing problem , 1993 .

[158]  Ömer Kirca,et al.  A new heuristic approach for the multi-item dynamic lot sizing problem , 1994 .

[159]  Marshall L. Fisher,et al.  The Lagrangian Relaxation Method for Solving Integer Programming Problems , 2004, Manag. Sci..

[160]  A. Federgruen,et al.  A Simple Forward Algorithm to Solve General Dynamic Lot Sizing Models with n Periods in 0n log n or 0n Time , 1991 .

[161]  A. Drexl,et al.  Proportional lotsizing and scheduling , 1995 .