Robust controller synthesis for a class of uncertain systems and application to visual feedback control

In this paper, we consider the robust synthesis problem of dynamic output feedback controller for a class of polytopic uncertain systems. The motivation dealing with this special class arises from visual feedback stabilization problems under image distortion. The effectiveness of the proposed matrix inequality condition is verified by the experiments of visual feedback stabilization with a cart and pendulum system.

[1]  Jan Swevers,et al.  Gain‐scheduled dynamic output feedback control for discrete‐time LPV systems , 2012 .

[2]  I. Masubuchi,et al.  LMI-based output feedback controller design-using a convex parametrization of full-order controllers , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[3]  Hiroyuki Kawai,et al.  Passivity-Based Dynamic Visual Feedback Control for Three-Dimensional Target Tracking: Stability and $L_{2}$-Gain Performance Analysis , 2007, IEEE Transactions on Control Systems Technology.

[4]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[5]  Javad Mohammadpour,et al.  Control of linear parameter varying systems with applications , 2012 .

[6]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[7]  H. Ichihara,et al.  Attitude control of acrobot by gain scheduling control based on sum of squares , 2010, Proceedings of the 2010 American Control Conference.

[8]  Paul R. Cohen,et al.  Camera Calibration with Distortion Models and Accuracy Evaluation , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Kentaro Hirata,et al.  Visual Feedback Stabilization of Balancing Tasks with Camera Misalignment , 2012 .

[10]  Koichi Hashimoto,et al.  Multi-camera visual servoing of a micro helicopter under occlusions , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  A. Packard,et al.  Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback , 1994 .

[12]  Masatoshi Ishikawa,et al.  Device and System Development of General Purpose Digital Vision Chip , 2000, J. Robotics Mechatronics.

[13]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[14]  Ricardo C. L. F. Oliveira,et al.  A BMI approach for ℋ︁∞ gain scheduling of discrete time‐varying systems , 2010 .

[15]  Yoichi Hori,et al.  Visual servoing based on multirate sampling control-application of perfect disturbance rejection control , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).