A spectral collocation method for nonlocal diffusion equations

Nonlocal diffusion model provides an appropriate description of the diffusion process of solute in the complex medium, which cannot be described properly by classical theory of PDE. However, the operators in the nonlocal diffusion models are nonlocal, so the resulting numerical methods generate dense or full stiffness matrices. This imposes significant computational and memory challenge for a nonlocal diffusion model. In this paper, we develop a spectral collocation method for the nonlocal diffusion model and provide a rigorous error analysis which theoretically justifies the spectral rate of convergence provided that the kernel functions and the source functions are sufficiently smooth. Compared to finite difference methods and finite element methods, because of the high order convergence rates, the numerical cost of spectral collocation methods will be greatly decreased. Numerical results confirm the exponential rate of convergence.

[1]  Qiang Du,et al.  Analysis and Comparison of Different Approximations to Nonlocal Diffusion and Linear Peridynamic Equations , 2013, SIAM J. Numer. Anal..

[2]  Yin Yang,et al.  Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis , 2017, Comput. Math. Appl..

[3]  Yin Yang,et al.  Numerical solutions for solving time fractional Fokker-Planck equations based on spectral collocation methods , 2017, J. Comput. Appl. Math..

[4]  Stanley Osher,et al.  Image Recovery via Nonlocal Operators , 2010, J. Sci. Comput..

[5]  Qiang Du,et al.  Finite range jump processes and volume–constrained diffusion problems , 2014 .

[6]  Hong Wang,et al.  A fast and faithful collocation method with efficient matrix assembly for a two-dimensional nonlocal diffusion model , 2014 .

[7]  S. Silling,et al.  Deformation of a Peridynamic Bar , 2003 .

[8]  Qiang Du,et al.  Nonlocal convection-diffusionvolume-constrained problems and jump processes , 2014 .

[9]  Roderick Wong,et al.  Szegő’s conjecture on Lebesgue constants for Legendre series , 1988 .

[10]  Paul C. Fife,et al.  Some Nonclassical Trends in Parabolic and Parabolic-like Evolutions , 2003 .

[11]  Li Tian,et al.  A Convergent Adaptive Finite Element Algorithm for Nonlocal Diffusion and Peridynamic Models , 2013, SIAM J. Numer. Anal..

[12]  S. Silling,et al.  A meshfree method based on the peridynamic model of solid mechanics , 2005 .

[13]  Q. Du,et al.  MATHEMATICAL ANALYSIS FOR THE PERIDYNAMIC NONLOCAL CONTINUUM THEORY , 2011 .

[14]  Youn Doh Ha,et al.  Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites , 2012 .

[15]  Liviu I. Ignat,et al.  A nonlocal convection–diffusion equation , 2007 .

[16]  R. Lehoucq,et al.  Peridynamic Theory of Solid Mechanics , 2010 .

[17]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[18]  Jie Shen,et al.  A Triangular Spectral Element Method Using Fully Tensorial Rational Basis Functions , 2009, SIAM J. Numer. Anal..

[19]  Luc Mieussens,et al.  Analysis of an Asymptotic Preserving Scheme for Linear Kinetic Equations in the Diffusion Limit , 2009, SIAM J. Numer. Anal..

[20]  Qiang Du,et al.  Nonlocal Convection-Diffusion Problems on Bounded Domains and Finite-Range Jump Processes , 2017, Comput. Methods Appl. Math..

[21]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[22]  Florin Bobaru,et al.  A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities , 2012, J. Comput. Phys..

[23]  Qiang Du,et al.  Mathematical Models and Methods in Applied Sciences c ○ World Scientific Publishing Company Sandia National Labs SAND 2010-8353J A NONLOCAL VECTOR CALCULUS, NONLOCAL VOLUME-CONSTRAINED PROBLEMS, AND NONLOCAL BALANCE LAWS , 2022 .

[24]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[25]  Chuanju Xu,et al.  A fractional spectral method with applications to some singular problems , 2016, Adv. Comput. Math..

[26]  Peter W. Bates,et al.  An Integrodifferential Model for Phase Transitions: Stationary Solutions in Higher Space Dimensions , 1999 .

[27]  Qiang Du,et al.  Nonlocal convection–diffusion problems and finite element approximations , 2015 .

[28]  Mauro Perego,et al.  A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions , 2016, Comput. Math. Appl..

[29]  Yanping Chen,et al.  A spectral collocation method for multidimensional nonlinear weakly singular Volterra integral equation , 2018, J. Comput. Appl. Math..

[30]  Tao Tang,et al.  Numerical Solutions for Weakly Singular Volterra Integral Equations Using Chebyshev and Legendre Pseudo-Spectral Galerkin Methods , 2016, J. Sci. Comput..

[31]  X. Chen,et al.  Continuous and discontinuous finite element methods for a peridynamics model of mechanics , 2011 .

[32]  Kun Zhou,et al.  Mathematical and Numerical Analysis of Linear Peridynamic Models with Nonlocal Boundary Conditions , 2010, SIAM J. Numer. Anal..

[33]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[34]  Jiang Yang,et al.  Asymptotically Compatible Fourier Spectral Approximations of Nonlocal Allen-Cahn Equations , 2016, SIAM J. Numer. Anal..

[35]  Stewart Andrew Silling,et al.  Linearized Theory of Peridynamic States , 2010 .

[36]  S. Silling,et al.  Peridynamics via finite element analysis , 2007 .

[37]  Li Tian,et al.  A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models , 2013, Math. Comput..

[38]  Yanping Chen,et al.  Legendre spectral collocation method for neutral and high-order Volterra integro-differential equation , 2014 .

[39]  Michael L. Parks,et al.  Interface problems in nonlocal diffusion and sharp transitions between local and nonlocal domains , 2013 .

[40]  Selda Oterkus,et al.  Peridynamic thermal diffusion , 2014, J. Comput. Phys..

[42]  Tang,et al.  ON SPECTRAL METHODS FOR VOLTERRA INTEGRAL EQUATIONS AND THE CONVERGENCE ANALYSIS , 2008 .

[43]  Jean-Michel Morel,et al.  Image Denoising Methods. A New Nonlocal Principle , 2010, SIAM Rev..

[44]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[45]  Qiang Du,et al.  A conservative nonlocal convection–diffusion model and asymptotically compatible finite difference discretization , 2017 .

[46]  Florin Bobaru,et al.  The peridynamic formulation for transient heat conduction , 2010 .

[47]  Jiang Yang,et al.  Fast and accurate implementation of Fourier spectral approximations of nonlocal diffusion operators and its applications , 2017, J. Comput. Phys..