Exploration of the equilibrium operating space for NSTX-Upgrade

This paper explores a range of high-performance equilibrium scenarios achievable with neutral beam heating in the NSTX-Upgrade device (Menard J.E. 2012 Nucl. Fusion 52 083015). NSTX-Upgrade is a substantial upgrade to the existing NSTX device (Ono M. et al 2000 Nucl. Fusion 40 557), with significantly higher toroidal field and solenoid capabilities, and three additional neutral beam sources with significantly larger current-drive efficiency. Equilibria are computed with free-boundary TRANSP, allowing a self-consistent calculation of the non-inductive current-drive sources, the plasma equilibrium and poloidal-field coil currents, using the realistic device geometry. The thermal profiles are taken from a variety of existing NSTX discharges, and different assumptions for the thermal confinement scalings are utilized. The no-wall and ideal-wall n = 1 stability limits are computed with the DCON code. The central and minimum safety factors are quite sensitive to many parameters: they generally increase with large outer plasma-wall gaps and higher density, but can have either trend with the confinement enhancement factor. In scenarios with strong central beam current drive, the inclusion of non-classical fast-ion diffusion raises qmin, decreases the pressure peaking, and generally improves the global stability, at the expense of a reduction in the non-inductive current-drive fraction; cases with less beam current drive are largely insensitive to additional fast-ion diffusion. The non-inductive current level is quite sensitive to the underlying confinement and profile assumptions. For instance, for BT = 1.0 T and Pinj = 12.6 MW, the non-inductive current level varies from 875 kA with ITER-98y,2 thermal confinement scaling and narrow thermal profiles to 1325 kA for an ST specific scaling expression and broad profiles. Scenarios are presented which can be sustained for 8–10 s, or (20–30) τCR, at βN = 3.8–4.5. The value of qmin can be controlled at either fixed non-inductive fraction of 100% or fixed plasma current, by varying which beam sources are used, opening the possibility for feedback control of the current profile. In terms of quantities like collisionality, neutron emission, non-inductive fraction, or stored energy, these scenarios represent a significant performance extension compared with NSTX and other present spherical torii.

[1]  G. Bateman,et al.  The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library , 2004 .

[2]  R. E. Bell,et al.  Aspect Ratio Scaling of Ideal No-wall Stability Limits in High Bootstrap Fraction Tokamak Plasmas , 2003 .

[3]  K. Tritz,et al.  Studies of improved electron confinement in low density L-mode National Spherical Torus Experiment discharges , 2006 .

[4]  R. Bell,et al.  Fast ion loss in a ‘sea-of-TAE’ , 2006 .

[5]  C. Giroud,et al.  Scaling of density peaking in H-mode plasmas based on a combined database of AUG and JET observations , 2007 .

[6]  L. L. Lao,et al.  Resistive wall mode stabilization of high-β plasmas in the National Spherical Torus Experimenta) , 2005 .

[7]  L. Garzotti,et al.  Scaling of H-mode energy confinement with Ip and BT in the MAST spherical tokamak , 2009 .

[8]  F. Hinton,et al.  Trapped electron correction to beam driven current in general tokamak equilibria , 1997 .

[9]  David R. Smith,et al.  Internal transport barriers in the National Spherical Torus Experiment , 2009 .

[10]  A. D. Turnbull,et al.  Stationary, high bootstrap fraction plasmas in DIII-D without inductive current control , 2005 .

[11]  V A Soukhanovskii,et al.  Taming the plasma–material interface with the ‘snowflake’ divertor in NSTX , 2015 .

[12]  Jet Efda Contributors,et al.  Sawtooth control using off-axis NBI , 2008 .

[13]  M. Viola,et al.  Exploration of spherical torus physics in the NSTX device , 2000 .

[14]  E. G. Hope,et al.  Frequency of the Hydrogen Maser , 1971, Nature.

[15]  P. J. Knight,et al.  Conceptual design of a component test facility based on the spherical tokamak , 2008 .

[16]  R. Galvão,et al.  «Natural elongation» of spherical tokamaks , 1992 .

[17]  R. Budny,et al.  Validation of on- and off-axis neutral beam current drive against experiment in DIII-D , 2008 .

[18]  D. J. Ward,et al.  Stabilization of ideal modes by resistive walls in tokamaks with plasma rotation and its effect on the beta limit , 1995 .

[19]  R. Waltz,et al.  A gyro-Landau-fluid transport model , 1997 .

[20]  J. Manickam,et al.  Off-axis fishbone-like instability and excitation of resistive wall modes in JT-60U and DIII-D , 2011 .

[21]  R. Bell,et al.  Suppression of electron temperature gradient turbulence via negative magnetic shear in NSTX. , 2011, Physical review letters.

[22]  M. Gryaznevich,et al.  Achievement of Record β in the START Spherical Tokamak , 1998 .

[23]  R. Gruber,et al.  MHD-limits to plasma confinement , 1984 .

[24]  J. Manickam,et al.  The relationships between edge localized modes suppression, pedestal profiles and lithium wall coatings in NSTX , 2011 .

[25]  R. D. Stambaugh,et al.  THE SPHERICAL TOKAMAK PATH TO FUSION POWER , 1998 .

[26]  A. Bondeson,et al.  The CHEASE code for toroidal MHD equilibria , 1996 .

[27]  K. Tritz,et al.  Active stabilization of the resistive-wall mode in high-beta, low-rotation plasmas. , 2006, Physical review letters.

[28]  Bondeson,et al.  Stabilization of external modes in tokamaks by resistive walls and plasma rotation. , 1994, Physical review letters.

[29]  E. D. Fredrickson,et al.  A component test facility based on the spherical tokamak , 2005 .

[30]  J. Lawson,et al.  Implementation of βN Control in the National Spherical Torus Experiment , 2012 .

[31]  James R. Wilson,et al.  High harmonic fast wave heating efficiency enhancement and current drive at longer wavelength on the National Spherical Torus Experiment , 2008 .

[32]  A M Garofalo,et al.  Evidence for the importance of trapped particle resonances for resistive wall mode stability in high beta tokamak plasmas. , 2011, Physical review letters.

[33]  T. J. Martin,et al.  Steady state operation of spherical tokamaks , 2000 .

[34]  R. Bell,et al.  Effect of collisionality on kinetic stability of the resistive wall mode. , 2011, Physical review letters.

[35]  E. J. Strait,et al.  Relationship between onset thresholds, trigger types and rotation shear for the m/n = 2/1 neoclassical tearing mode in a high-β spherical torus , 2009 .

[36]  James R. Wilson,et al.  Progress towards steady state at low aspect ratio on the National Spherical Torus Experiment (NSTX) , 2007 .

[37]  G. Tardini,et al.  The effect of off-axis neutral beam injection on sawtooth stability in ASDEX Upgrade and Mega-Ampere Spherical Tokamak , 2009 .

[38]  L. L. Lao,et al.  Higher beta at higher elongation in the DIII-D tokamak , 1991 .

[39]  R. E. Bell,et al.  Observation and correction of non-resonant error fields in NSTX , 2010 .

[40]  R. Bell,et al.  Observations of reduced electron Gyroscale fluctuations in national spherical torus experiment H-mode plasmas with large ExB flow shear. , 2009, Physical Review Letters.

[41]  R. Bell,et al.  Profiles of fast ions that are accelerated by high harmonic fast waves in the National Spherical Torus Experiment , 2010 .

[42]  C. Neumeyer,et al.  Overview of the physics and engineering design of NSTX upgrade , 2011, IEEE/IPSS Symposium on Fusion Engineering.

[43]  E. D. Fredrickson,et al.  Internal kink mode dynamics in high-β NSTX plasmas , 2005 .

[44]  P. M. Ryan,et al.  Overview of recent physics results from the National Spherical Torus Experiment (NSTX) , 2007 .

[45]  J. Manickam,et al.  Ideal MHD stability limits of low aspect ratio tokamak plasmas , 1997 .

[46]  Adrianus C. C. Sips Advanced scenarios for ITER operation , 2005 .

[47]  Zhihong Lin,et al.  Transport of energetic particles by microturbulence in magnetized plasmas. , 2008, Physical review letters.

[48]  C. Roach,et al.  L-H transition in the mega-amp spherical tokamak. , 2002, Physical review letters.

[49]  Dennis J Strickler,et al.  Features of spherical torus plasmas , 1986 .

[50]  K. C. Lee,et al.  Density gradient stabilization of electron temperature gradient driven turbulence in a spherical tokamak. , 2011, Physical review letters.

[51]  S. Pinches,et al.  Study of the fast ion confinement and current profile control on MAST , 2009 .

[52]  R. E. Bell,et al.  Divertor heat flux mitigation in high-performance H-mode discharges in the National Spherical Torus Experiment , 2009 .

[53]  C. Roach,et al.  Towards the construction of a model to describe the inter-ELM evolution of the pedestal on MAST , 2011, 1107.3109.

[54]  F. Jenko,et al.  Electrostatic and magnetic transport of energetic ions in turbulent plasmas. , 2009, Physical review letters.

[55]  D. Stutman,et al.  Beta-limiting instabilities and global mode stabilization in the National Spherical Torus Experiment , 2002 .

[56]  R. Bell,et al.  Dynamical evolution of pedestal parameters in ELMy H-mode in the National Spherical Torus Experiment , 2011 .

[57]  K. Tritz,et al.  Transport with reversed shear in the National Spherical Torus Experimenta) , 2007 .

[58]  Tihiro Ohkawa,et al.  New methods of driving plasma current in fusion devices , 1970 .

[59]  R. Bell,et al.  Microtearing instabilities and electron transport in the NSTX spherical tokamak. , 2007, Physical review letters.

[60]  L. Zakharov,et al.  Plasma response to lithium-coated plasma-facing components in the National Spherical Torus Experiment , 2009 .

[61]  L. L. Lao,et al.  Overview of results from the National Spherical Torus Experiment (NSTX) , 2009 .

[62]  Jong-Kyu Park,et al.  Progress in understanding error-field physics in NSTX spherical torus plasmas , 2007 .

[63]  E. J. Strait,et al.  Stability of high beta tokamak plasmas , 1994 .

[64]  A. G. Peeters,et al.  The bootstrap current and its consequences , 2000 .

[65]  P. C. de Vries,et al.  Real-time control of the q-profile in JET for steady state advanced tokamak operation , 2003 .

[66]  S. Pinches,et al.  Recent experiments on Alfvén eigenmodes in MAST , 2008 .

[67]  E. D. Fredrickson,et al.  Recent progress towards an advanced spherical torus operating point in NSTX , 2011 .

[68]  F. Andersson,et al.  Experimental studies of instabilities and confinement of energetic particles on JET and MAST , 2005 .

[69]  D K Mansfield,et al.  Edge-localized-mode suppression through density-profile modification with lithium-wall coatings in the National Spherical Torus Experiment. , 2009, Physical review letters.

[70]  Lao,et al.  Wall stabilization of high beta tokamak discharges in DIII-D. , 1995, Physical review letters.

[71]  S. A. Sabbagh,et al.  Investigation of multiple roots of the resistive wall mode dispersion relation, including kinetic effects , 2011 .

[72]  F. Wagner,et al.  Regime of Improved Confinement and High Beta in Neutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak , 1982 .

[73]  C. Kessel,et al.  Advanced ST plasma scenario simulations for NSTX , 2004 .

[74]  E. D. Fredrickson,et al.  β-Limiting MHD instabilities in improved-performance NSTX spherical torus plasmas , 2003 .

[75]  Farrokh Najmabadi,et al.  Spherical torus concept as power plants—the ARIES-ST study , 2003 .

[76]  C. M. Greenfield,et al.  Optimization of DIII-D advanced tokamak discharges with respect to the β limita) , 2005 .

[77]  S. S. Medley,et al.  Exploration of high harmonic fast wave heating on the National Spherical Torus Experiment , 2003 .

[78]  Graydon L. Yoder,et al.  Remote Handling and Plasma Conditions to Enable Fusion Nuclear Science R&D Using a Component Testing Facility , 2009 .

[79]  John W. Berkery,et al.  The Role of Kinetic Effects, Including Plasma Rotation and Energetic Particles, in Resistive Wall Mode Stability , 2009 .

[80]  E. Belova,et al.  Beam ion driven instabilities in the National Spherical Tokamak Experiment , 2004 .

[81]  Olivier Sauter,et al.  Stable equilibria for bootstrap-current driven low aspect ratio tokamaks , 1996 .

[82]  Hong,et al.  Higher Fusion Power Gain with Current and Pressure Profile Control in Strongly Shaped DIII-D Tokamak Plasmas. , 1996, Physical review letters.

[83]  Mohamed A. Abdou,et al.  A volumetric neutron source for fusion nuclear technology testing and development , 1995 .

[84]  M. V. Umansky,et al.  The magnetic field structure of a snowflake divertor , 2008 .

[85]  P. J. Knight,et al.  Integrated plasma physics modelling for the Culham steady state spherical tokamak fusion power plant , 2004 .

[86]  Nathaniel J. Fisch,et al.  Theory of current-drive in plasmas , 1987 .

[87]  K. Tritz,et al.  Correlation between electron transport and shear Alfvén activity in the National Spherical Torus Experiment. , 2009, Physical review letters.

[88]  S. S. Medley,et al.  Collective fast ion instability-induced losses in National Spherical Tokamak Experiment , 2006 .

[89]  E. D. Fredrickson,et al.  Effect of plasma shaping on performance in the National Spherical Torus Experiment , 2006 .

[90]  R. Bell,et al.  Experimental studies on fast-ion transport by Alfven wave avalanches on the National Spherical Torus Experiment , 2009 .

[91]  R. E. Waltz,et al.  The first transport code simulations using the trapped gyro-Landau-fluid model , 2008 .

[92]  K. Tritz,et al.  Modeling fast-ion transport during toroidal Alfvén eigenmode avalanches in National Spherical Torus Experiment , 2009 .

[93]  R. J. Groebner,et al.  Development and validation of a predictive model for the pedestal height , 2008 .

[94]  C. Angioni,et al.  Density profile peaking in low collisionality H-modes: comparison of Alcator C-Mod data to ASDEX Upgrade/JET scalings , 2007 .

[95]  L. Grisham TFTR neutral beam operations and results , 1994 .

[96]  J. Manickam,et al.  Pedestal characterization and stability of small-ELM regimes in NSTX , 2011 .

[97]  J. Kamperschroer,et al.  Operations with tritium neutral beams on the tokamak fusion test reactor , 1995 .

[98]  M. Ono,et al.  The effect of lithium surface coatings on plasma performance in the National Spherical Torus Experiment , 2008 .

[99]  Laila A. El-Guebaly,et al.  Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator , 2011 .

[100]  R. Bell,et al.  A quantitative account of electron energy transport in a National Spherical Tokamak Experiment plasma , 2008 .

[101]  S. Ramakrishnan,et al.  A Neutral Beam Injector Upgrade for NSTX , 2002 .

[102]  R. J. La Haye,et al.  Plasma models for real-time control of advanced tokamak scenarios , 2011 .

[103]  C. Roach,et al.  Confinement in START beam heated discharges , 2001 .

[104]  P. M. Ryan,et al.  Advances in high-harmonic fast wave physics in the National Spherical Torus Experiment , 2009 .

[105]  M. C. Zarnstorff,et al.  Experimental observation of neoclassical currents in a plasma , 1984 .

[106]  James R. Wilson,et al.  High Non-inductive Fraction H-mode Discharges Generated by High-harmonic Fast Wave Heating and Current Drive in the National Spherical Torus Experiment , 2012 .

[107]  Olivier Sauter,et al.  Stability at high performance in the MAST Spherical Tokamak , 2004 .

[108]  T. C. Luce,et al.  Realizing Steady State Tokamak Operation for Fusion Energy , 2009 .

[109]  A. Field,et al.  Saturated ideal modes in advanced tokamak regimes in MAST , 2010 .

[110]  A. T. Ramsey,et al.  Parallel electric resistivity in the TFTR tokamak , 1990 .

[111]  S. Wolfe,et al.  A new look at density limits in tokamaks , 1988 .

[112]  S. S. Medley,et al.  Observation of instability-induced current redistribution in a spherical-torus plasma. , 2006, Physical review letters.

[113]  J. Manickam,et al.  Onset and saturation of a non-resonant internal mode in NSTX and implications for AT modes in ITER , 2011 .

[114]  Sibylle Günter,et al.  Seed island of neoclassical tearing modes at ASDEX Upgrade , 1999 .

[115]  David R. Smith,et al.  Electron gyroscale fluctuation measurements in National Spherical Torus Experiment H-mode plasmasa) , 2009 .

[116]  A. D. Turnbull,et al.  Optimizing stability, transport, and divertor operation through plasma shaping for steady-state scenario development in DIII-D , 2009 .

[117]  M. Greenwald Density limits in toroidal plasmas , 2002 .

[118]  G. Taylor,et al.  Long Pulse High Performance Plasma Scenario Development for the National Spherical Torus Experiment , 2005 .

[119]  R. Bell,et al.  Energy confinement scaling in the low aspect ratio National Spherical Torus Experiment (NSTX) , 2005 .

[120]  M. Wisse,et al.  Collisionality and safety factor scalings of H-mode energy transport in the MAST spherical tokamak , 2011 .

[121]  J. Manickam,et al.  Advances in global MHD mode stabilization research on NSTX , 2010 .

[122]  J. E. Menard,et al.  Vessel eddy current measurement for the National Spherical Torus Experiment , 2004 .

[123]  J. Menard,et al.  Phenomenology of compressional Alfvén eigenmodes , 2004 .

[124]  T. L. Rhodes,et al.  Optimization of the safety factor profile for high noninductive current fraction discharges in DIII-D , 2011 .

[125]  R. E. Bell,et al.  Investigation of resistive wall mode stabilization physics in high-beta plasmas using applied non-axisymmetric fields in NSTX , 2007 .

[126]  Nstx Team,et al.  Divertor heat flux mitigation in the National Spherical Torus Experimenta) , 2008 .

[127]  D. Ryutov Geometrical properties of a “snowflake” divertor , 2007 .

[128]  D. A. Gates,et al.  High β, long pulse, bootstrap sustained scenarios on the National Spherical Torus Experiment (NSTX) , 2003 .

[129]  B. G. Penaflor,et al.  Plasma shape control on the National Spherical Torus Experiment (NSTX) using real-time equilibrium reconstruction , 2005 .

[130]  L. Lao,et al.  Sensitivity of the kink instability to the pressure profile , 1992 .

[131]  L. L. Lao,et al.  The resistive wall mode and feedback control physics design in NSTX , 2004 .

[132]  L. L. Lao,et al.  100% noninductive operation at high beta using off-axis ECCD in DIII-D , 2005 .

[133]  R. Bell,et al.  Electromagnetic transport from microtearing mode turbulence. , 2011, Physical review letters.

[134]  S. Saarelma,et al.  Macroscopic stability of high β MAST plasmas , 2011 .

[135]  S. Sharapov,et al.  Beta-dependence of energetic particle-driven instabilities in spherical tokamaks , 2004 .

[136]  C. Holcomb,et al.  Evidence for fast-ion transport by microturbulence. , 2009, Physical review letters.

[137]  O. Sauter,et al.  Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime , 1999 .

[138]  F. Jenko,et al.  Interaction of energetic particles with large and small scale instabilities , 2007 .

[139]  R. J. Hawryluk,et al.  An Empirical Approach to Tokamak Transport , 1981 .

[140]  P. M. Ryan,et al.  Short-scale turbulent fluctuations driven by the electron-temperature gradient in the national spherical torus experiment. , 2008, Physical review letters.

[141]  R. E. Waltz,et al.  ITER predictions using the GYRO verified and experimentally validated trapped gyro-Landau fluid transport model , 2011 .

[142]  Jet Efda Contributors,et al.  Non-inductive current drive and transport in high βN plasmas in JET , 2009 .

[143]  C. C. Petty,et al.  Beam-ion confinement for different injection geometries , 2009 .

[144]  Y-K.M. Peng,et al.  Characteristics of the first H-mode discharges in the national spherical torus experiment. , 2002, Physical review letters.

[145]  Experts,et al.  Experimental investigation and validation of neutral beam current drive for ITER through ITPA Joint Experiments , 2011 .

[146]  R Betti,et al.  Resistive wall mode instability at intermediate plasma rotation. , 2010, Physical review letters.

[147]  L. L. Lao,et al.  Resistive wall stabilized operation in rotating high beta NSTX plasmas , 2006 .

[148]  F. Hinton,et al.  Effect of finite aspect ratio on the neoclassical ion thermal conductivity in the banana regime , 1982 .

[149]  R. Bell,et al.  Scaling of Electron and Ion Transport in the High-Power Spherical Torus NSTX , 2007 .

[150]  O. Naito,et al.  Off-axis current drive and real-time control of current profile in JT-60U , 2008 .

[151]  E. D. Fredrickson,et al.  Progress towards steady state on NSTX , 2005 .

[152]  K. Tritz,et al.  Confinement and local transport in the National Spherical Torus Experiment (NSTX) , 2007 .