Bone marrow mesenchymal stromal cells from acute myelogenous leukemia patients demonstrate adipogenic differentiation propensity with implications for leukemia cell support

[1]  F. Di Palma,et al.  Acute myeloid leukemia induces protumoral p16INK4a-driven senescence in the bone marrow microenvironment. , 2019, Blood.

[2]  Sujoy Ghosh,et al.  Bone marrow MSCs in MDS: contribution towards dysfunctional hematopoiesis and potential targets for disease response to hypomethylating therapy , 2018, Leukemia.

[3]  S. Yehudai-Resheff,et al.  Abnormal morphological and functional nature of bone marrow stromal cells provides preferential support for survival of acute myeloid leukemia cells , 2018, International journal of cancer.

[4]  C. Finelli,et al.  Mesenchymal stromal cells from myelodysplastic and acute myeloid leukemia patients display in vitro reduced proliferative potential and similar capacity to support leukemia cell survival , 2018, Stem Cell Research & Therapy.

[5]  U. Germing,et al.  Transforming growth factor β1-mediated functional inhibition of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia , 2018, Haematologica.

[6]  W. Lu,et al.  Small bone marrow adipocytes predict poor prognosis in acute myeloid leukemia , 2018, Haematologica.

[7]  B. Leber,et al.  Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche , 2017, Nature Cell Biology.

[8]  D. Edwards,et al.  NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. , 2017, Blood.

[9]  D. Allan,et al.  Micro-RNA Profiling of Exosomes from Marrow-Derived Mesenchymal Stromal Cells in Patients with Acute Myeloid Leukemia: Implications in Leukemogenesis , 2017, Stem Cell Reviews and Reports.

[10]  R. Davis,et al.  AML-induced osteogenic differentiation in mesenchymal stromal cells supports leukemia growth. , 2017, JCI insight.

[11]  R. Davis,et al.  Tumor Trp53 status and genotype affect the bone marrow microenvironment in acute myeloid leukemia , 2017, Oncotarget.

[12]  W. Cawthorn,et al.  Editorial: Bone Marrow Adipose Tissue: Formation, Function, and Impact on Health and Disease , 2017, Front. Endocrinol..

[13]  M. Juan,et al.  Detailed Characterization of Mesenchymal Stem/Stromal Cells from a Large Cohort of AML Patients Demonstrates a Definitive Link to Treatment Outcomes , 2017, Stem cell reports.

[14]  K. Tarte,et al.  Alteration Analysis of Bone Marrow Mesenchymal Stromal Cells from De Novo Acute Myeloid Leukemia Patients at Diagnosis. , 2017, Stem cells and development.

[15]  D. Edwards,et al.  Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. , 2017, Blood.

[16]  C. Qian,et al.  Adipogenic niches for melanoma cell colonization and growth in bone marrow. , 2017, Laboratory investigation; a journal of technical methods and pathology.

[17]  Ø. Bruserud,et al.  Mesenchymal Stem Cells Support Survival and Proliferation of Primary Human Acute Myeloid Leukemia Cells through Heterogeneous Molecular Mechanisms , 2017, Front. Immunol..

[18]  N. Heisterkamp,et al.  Adipocytes cause leukemia cell resistance to daunorubicin via oxidative stress response , 2016, Oncotarget.

[19]  M. Gasparetto,et al.  Leukemic Stem Cells Evade Chemotherapy by Metabolic Adaptation to an Adipose Tissue Niche. , 2016, Cell stem cell.

[20]  Mario Cazzola,et al.  The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. , 2016, Blood.

[21]  R. B. Richardson,et al.  Adipogenic Mesenchymal Stromal Cells from Bone Marrow and Their Hematopoietic Supportive Role: Towards Understanding the Permissive Marrow Microenvironment in Acute Myeloid Leukemia , 2016, Stem Cell Reviews and Reports.

[22]  Ron-Patrick Cadeddu,et al.  Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia , 2016, Leukemia.

[23]  E. Parovichnikova,et al.  The ability of multipotent mesenchymal stromal cells from the bone marrow of patients with leukemia to maintain normal hematopoietic progenitor cells , 2016, European journal of haematology.

[24]  E. Abdelhay,et al.  The molecular signature of AML mesenchymal stromal cells reveals candidate genes related to the leukemogenic process. , 2015, Cancer letters.

[25]  A. Radhakrishnan,et al.  Modulatory effects of mesenchymal stem cells on leucocytes and leukemic cells: A double-edged sword? , 2015, Blood cells, molecules & diseases.

[26]  Ø. Bruserud,et al.  The cytokine-mediated crosstalk between primary human acute myeloid cells and mesenchymal stem cells alters the local cytokine network and the global gene expression profile of the mesenchymal cells. , 2015, Stem cell research.

[27]  D. Allan,et al.  Mesenchymal stromal cells from patients with acute myeloid leukemia have altered capacity to expand differentiated hematopoietic progenitors. , 2015, Leukemia research.

[28]  F. Appelbaum,et al.  Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration , 2015, Blood Cancer Journal.

[29]  S. Leem,et al.  Microenvironmental remodeling as a parameter and prognostic factor of heterogeneous leukemogenesis in acute myelogenous leukemia. , 2015, Cancer research.

[30]  A. Trumpp,et al.  Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. , 2014, Cell stem cell.

[31]  R. Davis,et al.  Reciprocal leukemia-stroma VCAM-1/VLA-4-dependent activation of NF-κB mediates chemoresistance. , 2014, Blood.

[32]  T. Kume,et al.  Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation , 2014, Nature.

[33]  R. Rabadán,et al.  Leukemogenesis Induced by an Activating β-catenin mutation in Osteoblasts , 2014, Nature.

[34]  F. Marincola,et al.  Leukemia cells induce changes in human bone marrow stromal cells , 2013, Journal of Translational Medicine.

[35]  F. Lo‐Coco,et al.  Biological, Functional and Genetic Characterization of Bone Marrow-Derived Mesenchymal Stromal Cells from Pediatric Patients Affected by Acute Lymphoblastic Leukemia , 2013, PloS one.

[36]  Daniel P Feldmann,et al.  Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms , 2013, Oncotarget.

[37]  I. Bruns,et al.  Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells , 2013, Leukemia.

[38]  J. Gribben,et al.  Acute myeloid leukemia does not deplete normal hematopoietic stem cells but induces cytopenias by impeding their differentiation , 2013, Proceedings of the National Academy of Sciences.

[39]  A. Bosserhoff,et al.  Sox9 modulates cell survival and adipogenic differentiation of multipotent adult rat mesenchymal stem cells , 2013, Journal of Cell Science.

[40]  C. Scheiermann,et al.  Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. , 2013, Annual review of immunology.

[41]  M. Tallman,et al.  Adult patients with acute myeloid leukemia who achieve complete remission after 1 or 2 cycles of induction have a similar prognosis , 2010, Cancer.

[42]  Ben D. MacArthur,et al.  Mesenchymal and haematopoietic stem cells form a unique bone marrow niche , 2010, Nature.

[43]  Charles P. Lin,et al.  Bone progenitor dysfunction induces myelodysplasia and secondary leukemia , 2010, Nature.

[44]  H. Sul Minireview: Pref-1: role in adipogenesis and mesenchymal cell fate. , 2009, Molecular endocrinology.

[45]  N. Heisterkamp,et al.  Adipocytes impair leukemia treatment in mice. , 2009, Cancer research.

[46]  D. Scadden,et al.  The leukemic stem cell niche: current concepts and therapeutic opportunities. , 2009, Blood.

[47]  G. Daley,et al.  Bone marrow adipocytes as negative regulators of the hematopoietic microenvironment , 2009, Nature.

[48]  Angela C. Colmone,et al.  Leukemic Cells Create Bone Marrow Niches That Disrupt the Behavior of Normal Hematopoietic Progenitor Cells , 2008, Science.

[49]  Sean J. Morrison,et al.  Stem Cells and Niches: Mechanisms That Promote Stem Cell Maintenance throughout Life , 2008, Cell.

[50]  B. Spiegelman,et al.  Krox20 stimulates adipogenesis via C/EBPbeta-dependent and -independent mechanisms. , 2005, Cell metabolism.

[51]  N. Fisk,et al.  Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. , 2001, Blood.

[52]  F. Appelbaum,et al.  Acute myeloid leukemia cells are protected from spontaneous and drug-induced apoptosis by direct contact with a human bone marrow stromal cell line (HS-5). , 2001, Experimental hematology.

[53]  H. Gralnick,et al.  Proposals for the Classification of the Acute Leukaemias French‐American‐British (FAB) Co‐operative Group , 1976, British journal of haematology.

[54]  Y. Hayashizaki,et al.  Bone Marrow Adipocytes Facilitate Fatty Acid Oxidation Activating AMPK and a Transcriptional Network Supporting Survival of Acute Monocytic Leukemia Cells. , 2017, Cancer research.

[55]  A. Jemal,et al.  Cancer statistics, 2017 , 2017, CA: a cancer journal for clinicians.

[56]  Michael P. Schroeder,et al.  Molecular alterations in bone marrow mesenchymal stromal cells derived from acute myeloid leukemia patients , 2017, Leukemia.

[57]  M. Voso,et al.  Impairment of PI3K/AKT and WNT/β-catenin pathways in bone marrow mesenchymal stem cells isolated from patients with myelodysplastic syndromes. , 2016, Experimental hematology.

[58]  A. Lindahl,et al.  Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach. , 2014, Stem cell research.

[59]  Yan Yuan,et al.  Morphology, differentiation and adhesion molecule expression changes of bone marrow mesenchymal stem cells from acute myeloid leukemia patients. , 2014, Molecular medicine reports.

[60]  D. Prockop,et al.  Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. , 2006, Cytotherapy.

[61]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.