LC/MS analysis and deep sequencing reveal the accurate RNA composition in the HIV-1 virion

[1]  Chi Zhang,et al.  Reversible RNA Modification N1-methyladenosine (m1A) in mRNA and tRNA , 2018, Genom. Proteom. Bioinform..

[2]  J. Puglisi,et al.  Architecture of an HIV-1 reverse transcriptase initiation complex , 2018, Nature.

[3]  Cara T. Pager,et al.  Positive-sense RNA viruses reveal the complexity and dynamics of the cellular and viral epitranscriptomes during infection , 2018, Nucleic acids research.

[4]  Janusz M. Bujnicki,et al.  MODOMICS: a database of RNA modification pathways. 2017 update , 2017, Nucleic Acids Res..

[5]  E. Kool,et al.  Fingerprints of Modified RNA Bases from Deep Sequencing Profiles. , 2017, Journal of the American Chemical Society.

[6]  Schraga Schwartz,et al.  The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution , 2017, Nature.

[7]  Marcel Martin,et al.  Atropos: specific, sensitive, and speedy trimming of sequencing reads , 2017, PeerJ.

[8]  L. Tong,et al.  5′ End Nicotinamide Adenine Dinucleotide Cap in Human Cells Promotes RNA Decay through DXO-Mediated deNADding , 2017, Cell.

[9]  C. Tisné,et al.  m1A Post-Transcriptional Modification in tRNAs , 2017, Biomolecules.

[10]  Yuri Motorin,et al.  Detecting RNA modifications in the epitranscriptome: predict and validate , 2017, Nature Reviews Genetics.

[11]  Hana Cahová,et al.  Capture and sequencing of NAD-capped RNA sequences with NAD captureSeq , 2016, Nature Protocols.

[12]  B. Cullen,et al.  Posttranscriptional m6A Editing of HIV-1 mRNAs Enhances Viral Gene Expression. , 2017, Cell host & microbe.

[13]  R. Parker,et al.  Identification of NAD+ capped mRNAs in Saccharomyces cerevisiae , 2016, Proceedings of the National Academy of Sciences.

[14]  Alexa B. R. McIntyre,et al.  N6-Methyladenosine in Flaviviridae Viral RNA Genomes Regulates Infection , 2016, Cell host & microbe.

[15]  Yuri Motorin,et al.  High-throughput sequencing for 1-methyladenosine (m(1)A) mapping in RNA. , 2016, Methods.

[16]  P. Bieniasz,et al.  Analysis of the human immunodeficiency virus-1 RNA packageome , 2016, RNA.

[17]  A. Telesnitsky,et al.  The Host RNAs in Retroviral Particles , 2016, Viruses.

[18]  Bryan R. Cullen,et al.  Posttranscriptional m(6)A Editing of HIV-1 mRNAs Enhances Viral Gene Expression. , 2016, Cell host & microbe.

[19]  Gideon Rechavi,et al.  The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA , 2016, Nature.

[20]  A. Telesnitsky,et al.  Host RNA Packaging by Retroviruses: A Newly Synthesized Story , 2016, mBio.

[21]  Andreas Hildebrandt,et al.  The reverse transcription signature of N-1-methyladenosine in RNA-Seq is sequence dependent , 2015, Nucleic acids research.

[22]  A. Telesnitsky,et al.  A retrovirus packages nascent host noncoding RNAs from a novel surveillance pathway , 2015, Genes & development.

[23]  Hana Cahová,et al.  NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs , 2014, Nature.

[24]  P. Bieniasz,et al.  Global Changes in the RNA Binding Specificity of HIV-1 Gag Regulate Virion Genesis , 2014, Cell.

[25]  Maxwell R. Mumbach,et al.  Transcriptome-wide Mapping Reveals Widespread Dynamic-Regulated Pseudouridylation of ncRNA and mRNA , 2014, Cell.

[26]  W. Gilbert,et al.  Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells , 2014, Nature.

[27]  Clement T Y Chan,et al.  Quantitative analysis of ribonucleoside modifications in tRNA by HPLC-coupled mass spectrometry , 2014, Nature Protocols.

[28]  Mark Helm,et al.  Posttranscriptional RNA Modifications: playing metabolic games in a cell's chemical Legoland. , 2014, Chemistry & biology.

[29]  M. Young,et al.  Exosomes Derived from HIV-1-infected Cells Contain Trans-activation Response Element RNA* , 2013, The Journal of Biological Chemistry.

[30]  B. Berkhout,et al.  Selective packaging of cellular miRNAs in HIV-1 particles. , 2012, Virus research.

[31]  M. Weitzman,et al.  Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11 , 2012, Nature.

[32]  O. Elemento,et al.  Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3′ UTRs and near Stop Codons , 2012, Cell.

[33]  M. Kupiec,et al.  Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq , 2012, Nature.

[34]  T. Preiss,et al.  Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA , 2012, Nucleic acids research.

[35]  Frank Baas,et al.  Deep sequencing of virus-infected cells reveals HIV-encoded small RNAs , 2011, Nucleic acids research.

[36]  Hideki Matsui,et al.  Deficit of tRNA(Lys) modification by Cdkal1 causes the development of type 2 diabetes in mice. , 2011, The Journal of clinical investigation.

[37]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[38]  H. Ueda,et al.  Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome. , 2010, Nature chemical biology.

[39]  A. Telesnitsky,et al.  7SL RNA Is Retained in HIV-1 Minimal Virus-Like Particles as an S-Domain Fragment , 2010, Journal of Virology.

[40]  T. Pan,et al.  Profiling non-lysyl tRNAs in HIV-1. , 2010, RNA.

[41]  K. Musier-Forsyth,et al.  Formation of the tRNALys packaging complex in HIV‐1 , 2010, FEBS letters.

[42]  S. Le,et al.  Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: evidence for the processing of a viral-cellular double-stranded RNA hybrid , 2009, Nucleic acids research.

[43]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[44]  Franck A. P. Vendeix,et al.  The structure of the human tRNALys3 anticodon bound to the HIV genome is stabilized by modified nucleosides and adjacent mismatch base pairs , 2009, Nucleic acids research.

[45]  R. Myers,et al.  tRNAs Promote Nuclear Import of HIV-1 Intracellular Reverse Transcription Complexes , 2006, PLoS biology.

[46]  A. Telesnitsky,et al.  7SL RNA, but not the 54-kd signal recognition particle protein, is an abundant component of both infectious HIV-1 and minimal virus-like particles. , 2006, RNA.

[47]  Marcin Feder,et al.  MODOMICS: a database of RNA modification pathways , 2005, Nucleic Acids Res..

[48]  J. Bujnicki,et al.  A primordial RNA modification enzyme: the case of tRNA (m1A) methyltransferase. , 2004, Nucleic acids research.

[49]  S. L. Le Grice,et al.  Role of Post-transcriptional Modifications of Primer tRNALys,3 in the Fidelity and Efficacy of Plus Strand DNA Transfer during HIV-1 Reverse Transcription* , 1999, The Journal of Biological Chemistry.

[50]  James L. Buescher,et al.  Preferential Completion of Human Immunodeficiency Virus Type 1 Proviruses Initiated with tRNA3Lys rather than tRNA1,2Lys , 1998, Journal of Virology.

[51]  S. Goff,et al.  RNA packaging. , 1996, Current topics in microbiology and immunology.

[52]  M. Wainberg,et al.  Role of Pr160gag-pol in mediating the selective incorporation of tRNA(Lys) into human immunodeficiency virus type 1 particles , 1994, Journal of virology.

[53]  J. Mak,et al.  Identification of tRNAs incorporated into wild-type and mutant human immunodeficiency virus type 1 , 1993, Journal of virology.

[54]  L. Reed,et al.  A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT ENDPOINTS , 1938 .