Does Palatini Higgs inflation conserve unitarity?

In the conventional metric formulation of gravity, the Higgs Inflation model violates unitarity in the electroweak vacuum in Higgs scattering at the energy scale Λ ∼ MPl /ξ, where ξ ∼ 104 is the non-minimal coupling of the Higgs to the Ricci scalar. In the Palatini formulation it is commonly believed that Λ ∼ MPl /√(ξ), where ξ ∼ 109. Here we reconsider unitarity violation in the electroweak vacuum in the Palatini formulation. We argue that there is no unitarity violation in Higgs scattering in the Palatini non-minimally coupled Standard Model in the electroweak vacuum at energies below the Planck scale. In this case Palatini Higgs Inflation completely conserves unitarity and is consistent at all energies up to those at which quantum gravity becomes important. If true, this would imply that Palatini Higgs Inflation has a significant advantage over metric Higgs Inflation.

[1]  H. Veermäe,et al.  Tachyonic preheating in Palatini R 2 inflation , 2021, Journal of Cosmology and Astroparticle Physics.

[2]  S. Räsänen,et al.  Higgs inflation with the Holst and the Nieh–Yan term , 2020, Physical Review D.

[3]  M. Raidal,et al.  Gravitational dark matter production in Palatini preheating , 2020, Journal of Cosmology and Astroparticle Physics.

[4]  J. McDonald,et al.  Sub-Planckian $\phi^{2}$ Inflation in the Palatini Formulation of Gravity with an $R^2$ term , 2020, 2002.08324.

[5]  M. Shaposhnikov,et al.  Quantum effects in Palatini Higgs inflation , 2020, Journal of Cosmology and Astroparticle Physics.

[6]  Tommi Tenkanen Tracing the high energy theory of gravity: an introduction to Palatini inflation , 2020, General Relativity and Gravitation.

[7]  Philip D. Plowright Front , 2019, 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4).

[8]  A. Lahanas,et al.  Reheating in R2 Palatini inflationary models , 2019, Physical Review D.

[9]  N. Bostan Quadratic, Higgs and hilltop potentials in Palatini gravity , 2019, Communications in Theoretical Physics.

[10]  S. Park,et al.  Higgs inflation in metric and Palatini formalisms: required suppression of higher dimensional operators , 2019, Journal of Cosmology and Astroparticle Physics.

[11]  J. Rubio,et al.  Preheating in Palatini Higgs inflation , 2019, Journal of Cosmology and Astroparticle Physics.

[12]  S. Räsänen Higgs inflation in the Palatini formulation with kinetic terms for the metric , 2018, The Open Journal of Astrophysics.

[13]  Tommi Tenkanen Minimal Higgs inflation with an R2 term in Palatini gravity , 2019, Physical Review D.

[14]  Tomo Takahashi,et al.  Towards distinguishing variants of non-minimal inflation , 2018, Journal of Cosmology and Astroparticle Physics.

[15]  I. Antoniadis,et al.  Rescuing quartic and natural inflation in the Palatini formalism , 2018, Journal of Cosmology and Astroparticle Physics.

[16]  S. Rasanen,et al.  Planck scale black hole dark matter from Higgs inflation , 2018, Journal of Cosmology and Astroparticle Physics.

[17]  S. Räsänen,et al.  Inflation with R2 term in the Palatini formulation , 2018, Journal of Cosmology and Astroparticle Physics.

[18]  J. Rubio Higgs Inflation , 2018, Front. Astron. Space Sci..

[19]  I. Antoniadis,et al.  Palatini inflation in models with an R2 term , 2018, Journal of Cosmology and Astroparticle Physics.

[20]  S. Räsänen,et al.  Higgs inflation with loop corrections in the Palatini formulation , 2017, 1709.07853.

[21]  F. Kahlhoefer,et al.  WIMP dark matter and unitarity-conserving inflation via a gauge singlet scalar , 2015, 1507.03600.

[22]  Jing Ren,et al.  Higgs gravitational interaction, weak boson scattering, and Higgs inflation in Jordan and Einstein frames , 2014, 1404.4627.

[23]  X. Calmet,et al.  Self-healing of unitarity in Higgs inflation , 2013, 1310.7410.

[24]  John F. Donoghue,et al.  Self-healing of unitarity in effective field theories and the onset of new physics , 2012, 1203.5153.

[25]  J. McDonald,et al.  Unitarity-violation in generalized Higgs inflation models , 2011, 1112.0954.

[26]  F. Bauer,et al.  Higgs-Palatini Inflation and Unitarity , 2010, 1012.2900.

[27]  G. Giudice,et al.  Unitarizing Higgs Inflation , 2010, 1010.1417.

[28]  J. McDonald,et al.  A Unitarity-Conserving Higgs Inflation Model , 2010, 1005.2978.

[29]  M. Hertzberg On inflation with non-minimal coupling , 2010, 1002.2995.

[30]  C. Burgess,et al.  On Higgs inflation and naturalness , 2010, 1002.2730.

[31]  J. McDonald,et al.  Higgs inflation and naturalness , 2009, 0912.5463.

[32]  J. Espinosa,et al.  On the Naturalness of Higgs Inflation , 2009, 0903.0355.

[33]  F. Bauer,et al.  Inflation with non-minimal coupling: Metric vs. Palatini formulations , 2008, 0803.2664.

[34]  M. Shaposhnikov,et al.  The Standard Model Higgs boson as the inflaton , 2007, 0710.3755.

[35]  T. Han,et al.  Scale of quantum gravity , 2004, hep-ph/0404182.

[36]  J. Bond,et al.  Designing density fluctuation spectra in inflation. , 1989, Physical review. D, Particles and fields.

[37]  M. Chanowitz,et al.  The TeV physics of strongly interacting W's and Z's , 1985 .

[38]  H. Thacker,et al.  Weak interactions at very high energies: The role of the Higgs-boson mass , 1977 .