A Simple Parallel Algorithm for the Single-Source Shortest Path Problem on Planar Digraphs

We present a simple parallel algorithm for the single-source shortest path problem in planar digraphs with nonnegative real edge weights. The algorithm runs on the EREW PRAM model of parallel computation in O((n2?+n1??)logn) time, performing O(n1+?logn) work for any 0<?<1/2. The strength of the algorithm is its simplicity, making it easy to implement and presumable quite efficient in practice. The algorithm improves upon the work of all previous parallel algorithms. Our algorithm is based on a region decomposition of the input graph and uses a well-known parallel implementation of Dijkstra's algorithm. The logarithmic factor in both the work and the time can be eliminated by plugging in a less practical, sequential planar shortest path algorithm together with an improved parallel implementation of Dijkstra's algorithm.

[1]  Christoph W. Kessler,et al.  Language and library support for practical PRAM programming , 1999, Parallel Comput..

[2]  Edith Cohen Efficient parallel shortest-paths in digraphs with a separator decomposition , 1993, SPAA '93.

[3]  Torben Hagerup,et al.  Optimal Parallel Algorithms on Planar Graphs , 1988, Inf. Comput..

[4]  Gary L. Miller,et al.  A parallel algorithm for finding a separator in planar graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[5]  Gerth Stølting Brodal,et al.  Worst-case efficient priority queues , 1996, SODA '96.

[6]  Philip N. Klein,et al.  An efficient parallel algorithm for planarity , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[7]  Philip N. Klein,et al.  A linear-processor polylog-time algorithm for shortest paths in planar graphs , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[8]  Christoph W. Kessler,et al.  A library of basic PRAM algorithms and its implementation in FORK , 1996, SPAA '96.

[9]  Gerth St lting Brodaly Worst-case Eecient Priority Queues , 1996 .

[10]  Robert E. Tarjan,et al.  Relaxed heaps: an alternative to Fibonacci heaps with applications to parallel computation , 1988, CACM.

[11]  Vijaya Ramachandran,et al.  Planarity Testing in Parallel , 1994, J. Comput. Syst. Sci..

[12]  Joseph JáJá,et al.  An Introduction to Parallel Algorithms , 1992 .

[13]  Jesper Larsson Träff,et al.  A Parallel Priority Queue with Constant Time Operations , 1998, J. Parallel Distributed Comput..

[14]  Jesper Larsson Träff,et al.  A Simple Parallel Algorithm for the Single-Source Shortest Path Problem on Planar Digraphs , 1996, IRREGULAR.

[15]  Philip N. Klein On Gazit and Miller's parallel algorithm for planar separators: achieving greater efficiency through random sampling , 1993, SPAA '93.

[16]  S. Sitharama Iyengar,et al.  Introduction to parallel algorithms , 1998, Wiley series on parallel and distributed computing.

[17]  Greg N. Frederickson,et al.  Fast Algorithms for Shortest Paths in Planar Graphs, with Applications , 1987, SIAM J. Comput..

[18]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[19]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[20]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[21]  Robert E. Tarjan,et al.  Fibonacci Heaps with Applications to Parallel Computation , 1988 .

[22]  Edith Cohen Efficient Parallel Shortest-Paths in Digraphs with a Separator Decomposition , 1996, J. Algorithms.

[23]  Zvi Galil,et al.  Proceedings of the 30th IEEE symposium on Foundations of computer science , 1994, FOCS 1994.

[24]  C. A. Philips,et al.  Parallel graph contraction , 1989, SPAA '89.

[25]  Gary L. Miller,et al.  Finding small simple cycle separators for 2-connected planar graphs. , 1984, STOC '84.

[26]  Torben Hagerup Optimal Parallel Algorithms on Planar Graphs , 1990, Inf. Comput..

[27]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..