Glucose metabolic upregulation via phosphorylation of S6 ribosomal protein affects tumor progression in distal cholangiocarcinoma

[1]  N. Saki,et al.  Digging deeper through glucose metabolism and its regulators in cancer and metastasis. , 2020, Life sciences.

[2]  H. Katayama,et al.  Combination gemcitabine plus S-1 versus gemcitabine plus cisplatin for advanced/recurrent biliary tract cancer: The FUGA-BT (JCOG1113) Randomized Phase III Clinical Trial. , 2019, Annals of oncology : official journal of the European Society for Medical Oncology.

[3]  S. Mochizuki,et al.  Circadian rhythm–dependent induction of hepatic lipogenic gene expression in rats fed a high-sucrose diet , 2019, The Journal of Biological Chemistry.

[4]  S. Pereira,et al.  Molecular Pathogenesis of Cholangiocarcinoma , 2019, BMC Cancer.

[5]  Ming-Huang Chen,et al.  mTOR Inhibitors in Advanced Biliary Tract Cancers , 2019, International journal of molecular sciences.

[6]  R. Salmond,et al.  mTOR Regulation of Glycolytic Metabolism in T Cells , 2018, Front. Cell Dev. Biol..

[7]  G. Gores,et al.  Cholangiocarcinoma — evolving concepts and therapeutic strategies , 2018, Nature Reviews Clinical Oncology.

[8]  Quan P. Ly,et al.  MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. , 2017, Cancer cell.

[9]  K. Sawanyawisuth,et al.  Overexpression of lactate dehydrogenase A in cholangiocarcinoma is correlated with poor prognosis. , 2017, Histology and histopathology.

[10]  D. Sabatini,et al.  mTOR Signaling in Growth, Metabolism, and Disease , 2017, Cell.

[11]  K. Murakami,et al.  Reduced phosphorylation of ribosomal protein S6 is associated with sensitivity to MEK inhibition in gastric cancer cells , 2016, Cancer science.

[12]  K. Morten,et al.  The Warburg effect: 80 years on , 2016, Biochemical Society transactions.

[13]  Craig B. Davis,et al.  A randomized phase II non-comparative study of PF-04691502 and gedatolisib (PF-05212384) in patients with recurrent endometrial cancer. , 2016, Gynecologic oncology.

[14]  Erika Ilagan,et al.  Emerging role of mTOR in the response to cancer therapeutics. , 2016, Trends in cancer.

[15]  K. Boberg,et al.  Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA) , 2016, Nature Reviews Gastroenterology &Hepatology.

[16]  T. Takada,et al.  Biliary tract cancer registry in Japan from 2008 to 2013 , 2016, Journal of hepato-biliary-pancreatic sciences.

[17]  J. Locasale,et al.  The Warburg Effect: How Does it Benefit Cancer Cells? , 2016, Trends in biochemical sciences.

[18]  Jae Keun Kim,et al.  Analysis of the Roles of Glucose Transporter 1 and Hexokinase 2 in the Metabolism of Glucose by Extrahepatic Bile Duct Cancer Cells , 2015, Clinical nuclear medicine.

[19]  G. Mills,et al.  Mutation Profiling in Cholangiocarcinoma: Prognostic and Therapeutic Implications , 2014, PloS one.

[20]  R. Schmid,et al.  Chemotherapy and Targeted Therapy in Advanced Biliary Tract Carcinoma: A Pooled Analysis of Clinical Trials , 2014, Chemotherapy.

[21]  J. Chun,et al.  Prognostic factors in patients with middle and distal bile duct cancers. , 2014, World journal of gastroenterology.

[22]  David S. Wishart,et al.  SMPDB 2.0: Big Improvements to the Small Molecule Pathway Database , 2013, Nucleic Acids Res..

[23]  P. LoRusso,et al.  Phase I study of PF-04691502, a small-molecule, oral, dual inhibitor of PI3K and mTOR, in patients with advanced cancer , 2014, Investigational New Drugs.

[24]  B. Manning,et al.  mTORC1 Status Dictates Tumor Response to Targeted Therapeutics , 2013, Science Signaling.

[25]  M. Piccart,et al.  Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. , 2012, The New England journal of medicine.

[26]  J. Stockman,et al.  Everolimus for Advanced Pancreatic Neuroendocrine Tumors , 2012 .

[27]  Takashi Kimura,et al.  Gene expression analysis for predicting gemcitabine resistance in human cholangiocarcinoma , 2011, Journal of hepato-biliary-pancreatic sciences.

[28]  David S. Wishart,et al.  Bioinformatics Applications Note Systems Biology Metpa: a Web-based Metabolomics Tool for Pathway Analysis and Visualization , 2022 .

[29]  A. Zhu,et al.  Genetics of biliary tract cancers and emerging targeted therapies. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[30]  Q. She,et al.  4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. , 2010, Cancer cell.

[31]  D. Cunningham,et al.  Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. , 2010, The New England journal of medicine.

[32]  Y. Cho,et al.  Clinical usefulness of 18F-FDG PET-CT for patients with gallbladder cancer and cholangiocarcinoma , 2010, Journal of Gastroenterology.

[33]  Jae Seung Kim,et al.  Clinical Role of 18F-FDG PET-CT in Suspected and Potentially Operable Cholangiocarcinoma: A Prospective Study Compared With Conventional Imaging , 2008, The American Journal of Gastroenterology.

[34]  T. Gruenberger,et al.  Activated Mammalian Target of Rapamycin Is an Adverse Prognostic Factor in Patients with Biliary Tract Adenocarcinoma , 2007, Clinical Cancer Research.

[35]  J. Sato,et al.  A new human cholangiocellular carcinoma cell line (HuCC-T1) producing carbohydrate antigen 19/9 in serum-free medium , 1989, In Vitro Cellular & Developmental Biology.

[36]  N. Sonenberg,et al.  Upstream and downstream of mTOR. , 2004, Genes & development.

[37]  K. Lillemoe,et al.  Identification of novel cellular targets in biliary tract cancers using global gene expression technology. , 2003, The American journal of pathology.

[38]  J. Avruch,et al.  The Mammalian Target of Rapamycin (mTOR) Partner, Raptor, Binds the mTOR Substrates p70 S6 Kinase and 4E-BP1 through Their TOR Signaling (TOS) Motif* , 2003, The Journal of Biological Chemistry.

[39]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[40]  S. Hesse,et al.  Positron emission tomography with [18F]fluoro‐2‐deoxy‐D‐glucose for diagnosis and staging of bile duct cancer , 2001 .

[41]  S. Hesse,et al.  Positron emission tomography with [(18)F]fluoro-2-deoxy-D-glucose for diagnosis and staging of bile duct cancer. , 2001, Hepatology.

[42]  A. Gingras,et al.  Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. , 1999, Molecular cell.

[43]  T. Kudo,et al.  Establishment of a new extrahepatic bile duct carcinoma cell line, TFK-1. , 1995, The Tohoku journal of experimental medicine.

[44]  H. Kikuchi,et al.  [Establishment and characterization of human cholaginocarcinoma, MEC, producing carbohydrate antigen 19-9]. , 1990, Human cell.

[45]  L. Sobin,et al.  TNM Classification of Malignant Tumours , 1987, UICC International Union Against Cancer.