SNLS3: CONSTRAINTS ON DARK ENERGY COMBINING THE SUPERNOVA LEGACY SURVEY THREE-YEAR DATA WITH OTHER PROBES

We present observational constraints on the nature of dark energy using the Supernova Legacy Survey three-year sample (SNLS3) of Guy et al. and Conley et al. We use the 472 Type Ia supernovae (SNe Ia) in this sample, accounting for recently discovered correlations between SN Ia luminosity and host galaxy properties, and include the effects of all identified systematic uncertainties directly in the cosmological fits. Combining the SNLS3 data with the full WMAP7 power spectrum, the Sloan Digital Sky Survey luminous red galaxy power spectrum, and a prior on the Hubble constant H_0 from SHOES, in a flat universe we find Ω_m = 0.269 ± 0.015 and w = –1.061^(+0.069)_(–0.068) (where the uncertainties include all statistical and SN Ia systematic errors)—a 6.5% measure of the dark energy equation-of-state parameter w. The statistical and systematic uncertainties are approximately equal, with the systematic uncertainties dominated by the photometric calibration of the SN Ia fluxes—without these calibration effects, systematics contribute only a ~2% error in w. When relaxing the assumption of flatness, we find Ω_m = 0.271 ± 0.015, Ω_k = –0.002 ± 0.006, and w = –1.069^(+0.091)_(–0.092). Parameterizing the time evolution of w as w(a) = w_0 + w_a (1–a) gives w_0 = –0.905 ± 0.196, w_a = –0.984^(+1.094)_(– 1.097) in a flat universe. All of our results are consistent with a flat, w = –1 universe. The size of the SNLS3 sample allows various tests to be performed with the SNe segregated according to their light curve and host galaxy properties. We find that the cosmological constraints derived from these different subsamples are consistent. There is evidence that the coefficient, β, relating SN Ia luminosity and color, varies with host parameters at >4σ significance (in addition to the known SN luminosity-host relation); however, this has only a small effect on the cosmological results and is currently a subdominant systematic.

[1]  J. Sollerman,et al.  Effects of the explosion asymmetry and viewing angle on the Type Ia supernova colour and luminosity calibration , 2011, 1101.3935.

[2]  Adam G. Riess,et al.  Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006 .

[3]  Institut d'Astrophysique Spatiale,et al.  Photometric redshifts from evolutionary synthesis with PÉGASE: The code Z-PEG and the z=0 age constraint , 2002 .

[4]  Armin Rest,et al.  IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.

[5]  Tokyo,et al.  Delay Time Distribution Measurement of Type Ia Supernovae by the Subaru/XMM-Newton Deep Survey and Implications for the Progenitor , 2008 .

[6]  R. Ellis,et al.  Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies , 2006, astro-ph/0605455.

[7]  N. B. Suntzeff,et al.  Constraining Cosmic Evolution of Type Ia Supernovae , 2007, 0710.2338.

[8]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[9]  M. S. Burns,et al.  SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION , 2010, 1004.1711.

[10]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[11]  Nicholas B. Suntzeff,et al.  THE CARNEGIE SUPERNOVA PROJECT: FIRST PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE , 2009, 0910.3330.

[12]  Jayaram N. Chengalur,et al.  Thick gas discs in faint dwarf galaxies , 2010, 1002.4474.

[13]  BVRI Light Curves for 29 Type Ia Supernovae , 1996, astro-ph/9609064.

[14]  R. Nichol,et al.  EVIDENCE FOR A CORRELATION BETWEEN THE Si ii λ4000 WIDTH AND TYPE Ia SUPERNOVA COLOR , 2010, 1012.4430.

[15]  F. Mannucci,et al.  Two populations of progenitors for type ia supernovae , 2005, astro-ph/0510315.

[16]  HUBBLE RESIDUALS OF NEARBY TYPE Ia SUPERNOVAE ARE CORRELATED WITH HOST GALAXY MASSES , 2009, 0912.0929.

[17]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[18]  D. Howell,et al.  Type Ia supernovae as stellar endpoints and cosmological tools. , 2010, Nature communications.

[19]  N. S. Philip,et al.  Results from the Supernova Photometric Classification Challenge , 2010, 1008.1024.

[20]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[21]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[22]  M. Sullivan,et al.  The dependence of Type Ia Supernovae luminosities on their host galaxies , 2010, 1003.5119.

[23]  Adam G. Riess,et al.  THE EFFECT OF HOST GALAXIES ON TYPE Ia SUPERNOVAE IN THE SDSS-II SUPERNOVA SURVEY , 2010, 1005.4687.

[24]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[25]  P. E. Nugent,et al.  K-corrections and spectral templates of Type Ia supernovae , 2007 .

[26]  Mark Sullivan,et al.  Predicted and Observed Evolution in the Mean Properties of Type Ia Supernovae with Redshift , 2007 .

[27]  Alexander S. Szalay,et al.  Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 luminous red galaxies (vol 404, pg 60, 2010) , 2009, 0907.1659.

[28]  J. Neill,et al.  Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification , 2005, astro-ph/0509195.

[29]  Stefano Casertano,et al.  A REDETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE FROM A DIFFERENTIAL DISTANCE LADDER , 2009, 0905.0695.

[30]  Shinji Tsujikawa,et al.  Dynamics of dark energy , 2006 .

[31]  M. Sullivan,et al.  THE MEAN TYPE IA SUPERNOVA SPECTRUM OVER THE PAST NINE GIGAYEARS , 2009, 0901.2476.

[32]  A. Lewis,et al.  Crossing the phantom divide with parametrized post-Friedmann dark energy , 2008, 0808.3125.

[33]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[34]  Mark Sullivan,et al.  The Progenitors of Type Ia Supernovae , 2008, 0806.3729.

[35]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[36]  S. C. Keller,et al.  The SkyMapper Telescope and The Southern Sky Survey , 2007, Publications of the Astronomical Society of Australia.

[37]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[38]  J. Frieman,et al.  Dark Energy and the Accelerating Universe , 2008, 0803.0982.

[39]  Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background: Significance and Consequences for Cosmology , 2001, astro-ph/0105296.

[40]  M. Sullivan,et al.  Supernova Legacy Survey: using spectral signatures to improve Type Ia supernovae as distance indicators , 2010, 1008.2308.

[41]  M. Sullivan,et al.  The ESO/VLT 3rd year Type Ia supernova data set from the supernova legacy survey , 2009, 0909.3316.

[42]  N. B. Suntzeff,et al.  The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry , 2007, astro-ph/0701043.

[43]  E. Linder Exploring the expansion history of the universe. , 2002, Physical review letters.

[44]  M. Sullivan,et al.  The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints , , 2010, 1010.4743.

[45]  M. Sullivan,et al.  SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.

[46]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[47]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[48]  R. Ellis,et al.  Verifying the Cosmological Utility of Type Ia Supernovae: Implications of a Dispersion in the Ultraviolet Spectra , 2007, 0710.3896.

[49]  R. Nichol,et al.  COSMOLOGY WITH PHOTOMETRICALLY CLASSIFIED TYPE Ia SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY , 2012, 1211.4480.

[50]  J. Neill,et al.  Photometric Selection of High-Redshift Type Ia Supernova Candidates , 2005, astro-ph/0510857.

[51]  F. Mannucci,et al.  The Supernova rate per unit mass , 2004, astro-ph/0411450.

[52]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[53]  Kevin Krisciunas,et al.  THE CARNEGIE SUPERNOVA PROJECT: ANALYSIS OF THE FIRST SAMPLE OF LOW-REDSHIFT TYPE-Ia SUPERNOVAE , 2009, 0910.3317.

[54]  I. Hook,et al.  REAL-TIME ANALYSIS AND SELECTION BIASES IN THE SUPERNOVA LEGACY SURVEY , 2010, 1006.2254.

[55]  William Press,et al.  A Precise Distance Indicator: Type Ia Supernova Multicolor Light-Curve Shapes , 1996, astro-ph/9604143.

[56]  Nicholas B. Suntzeff,et al.  A Hubble diagram of distant type IA supernovae , 1993 .

[57]  S. E. Woosley,et al.  The diversity of type Ia supernovae from broken symmetries , 2009, Nature.

[58]  M. Sullivan,et al.  Photometric calibration of the Supernova Legacy Survey fields , 2006, astro-ph/0610397.

[59]  et al,et al.  UBVRI Light Curves of 44 Type Ia Supernovae , 2005 .

[60]  Adam G. Riess,et al.  BVRI Light Curves for 22 Type Ia Supernovae , 1998 .

[61]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[62]  Spectra of high-redshift type Ia supernovae and a comparison with their low-redshift counterparts , 2005, astro-ph/0509041.

[63]  Timothy D. Brandt,et al.  THE AGES OF TYPE Ia SUPERNOVA PROGENITORS , 2010, 1002.0848.

[64]  M. Sullivan,et al.  SiFTO: An Empirical Method for Fitting SN Ia Light Curves , 2008, 0803.3441.

[65]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[66]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[67]  J. Vanderplas,et al.  FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.

[68]  Berkeley,et al.  SNLS Spectroscopy: Testing for Evolution in Type Ia Supernovae , 2007, 0709.0859.

[69]  Andrew J. Connolly,et al.  Measuring the Matter Density Using Baryon Oscillations in the SDSS , 2006, astro-ph/0608635.

[70]  F. Timmes,et al.  ON VARIATIONS OF THE BRIGHTNESS OF TYPE Ia SUPERNOVAE WITH THE AGE OF THE HOST STELLAR POPULATION , 2010, 1007.0910.

[71]  Mansi M. Kasliwal,et al.  HUBBLE SPACE TELESCOPE STUDIES OF NEARBY TYPE Ia SUPERNOVAE: THE MEAN MAXIMUM LIGHT ULTRAVIOLET SPECTRUM AND ITS DISPERSION , 2010, 1010.2211.

[72]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[73]  I. Hook,et al.  Constraining dark matter halo properties using lensed Supernova Legacy Survey supernovae , 2010, 1002.1374.

[74]  M. Chevallier,et al.  ACCELERATING UNIVERSES WITH SCALING DARK MATTER , 2000, gr-qc/0009008.

[75]  Daniel Kasen,et al.  MEASURING EJECTA VELOCITY IMPROVES TYPE Ia SUPERNOVA DISTANCES , 2010, 1011.4517.

[76]  W. Hillebrandt,et al.  Type IA Supernova Explosion Models , 2000 .

[77]  Mamoru Doi,et al.  THE SLOAN DIGITAL SKY SURVEY-II: PHOTOMETRY AND SUPERNOVA IA LIGHT CURVES FROM THE 2005 DATA , 2008, 0908.4277.

[78]  Observational Constraints on Dark Energy and Cosmic Curvature , 2007, astro-ph/0703780.

[79]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[80]  C. Jackson,et al.  Dual-population radio source unification , 1997 .

[81]  Armin Rest,et al.  CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA , 2009, 0901.4787.

[82]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[83]  W. M. Wood-Vasey,et al.  Using Line Profiles to Test the Fraternity of Type Ia Supernovae at High and Low Redshifts , 2005, astro-ph/0510089.