SNLS3: CONSTRAINTS ON DARK ENERGY COMBINING THE SUPERNOVA LEGACY SURVEY THREE-YEAR DATA WITH OTHER PROBES
暂无分享,去创建一个
M. Sullivan | P. Astier | D. Hardin | V. Ruhlmann-Kleider | C. Balland | A. Conley | R. S. Ellis | H. K. Fakhouri | P. Ripoche | D. Fouchez | C. J. Pritchet | R. Pain | S. Perlmutter | N. Palanque-Delabrouille | S. Basa | R. G. Carlberg | M. L. Graham | J. Neill | I. Hook | P. Astier | M. Sullivan | N. Palanque-Delabrouille | J. Rich | A. Conley | S. González-Gaitán | D. Howell | M. Graham | H. Fakhouri | D. Fouchez | J. Guy | R. Pain | S. Perlmutter | N. Suzuki | E. Hsiao | S. Perlmutter | S. Fabbro | V. Ruhlmann-Kleider | R. Carlberg | C. Pritchet | K. Perrett | D. Balam | S. Basa | N. Regnault | C. Balland | S. Baumont | D. Hardin | A. Mourão | P. Ripoche | M. Hudson | D. A. Howell | J. D. Neill | N. Fourmanoit | C. Lidman | N. Regnault | N. Suzuki | I. M. Hook | J. Guy | S. Fabbro | T. Kronborg | E. Walker | M. J. Hudson | S. Baumont | K. M. Perrett | J. Rich | D. Balam | N. Fourmanoit | S. Gonzalez-Gaitan | E. Hsiao | T. Kronborg | A. M. Mourao | E. S. Walker | C. Lidmam | J. Guy | R. Ellis | S. González-Gaitán | M. Sullivan
[1] J. Sollerman,et al. Effects of the explosion asymmetry and viewing angle on the Type Ia supernova colour and luminosity calibration , 2011, 1101.3935.
[2] Adam G. Riess,et al. Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006 .
[3] Institut d'Astrophysique Spatiale,et al. Photometric redshifts from evolutionary synthesis with PÉGASE: The code Z-PEG and the z=0 age constraint , 2002 .
[4] Armin Rest,et al. IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.
[5] Tokyo,et al. Delay Time Distribution Measurement of Type Ia Supernovae by the Subaru/XMM-Newton Deep Survey and Implications for the Progenitor , 2008 .
[6] R. Ellis,et al. Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies , 2006, astro-ph/0605455.
[7] N. B. Suntzeff,et al. Constraining Cosmic Evolution of Type Ia Supernovae , 2007, 0710.2338.
[8] D. Schlegel,et al. Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.
[9] M. S. Burns,et al. SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION , 2010, 1004.1711.
[10] Edward J. Wollack,et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.
[11] Nicholas B. Suntzeff,et al. THE CARNEGIE SUPERNOVA PROJECT: FIRST PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE , 2009, 0910.3330.
[12] Jayaram N. Chengalur,et al. Thick gas discs in faint dwarf galaxies , 2010, 1002.4474.
[13] BVRI Light Curves for 29 Type Ia Supernovae , 1996, astro-ph/9609064.
[14] R. Nichol,et al. EVIDENCE FOR A CORRELATION BETWEEN THE Si ii λ4000 WIDTH AND TYPE Ia SUPERNOVA COLOR , 2010, 1012.4430.
[15] F. Mannucci,et al. Two populations of progenitors for type ia supernovae , 2005, astro-ph/0510315.
[16] HUBBLE RESIDUALS OF NEARBY TYPE Ia SUPERNOVAE ARE CORRELATED WITH HOST GALAXY MASSES , 2009, 0912.0929.
[17] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[18] D. Howell,et al. Type Ia supernovae as stellar endpoints and cosmological tools. , 2010, Nature communications.
[19] N. S. Philip,et al. Results from the Supernova Photometric Classification Challenge , 2010, 1008.1024.
[20] Stefano Casertano,et al. New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.
[21] M. Phillips,et al. The Absolute Magnitudes of Type IA Supernovae , 1993 .
[22] M. Sullivan,et al. The dependence of Type Ia Supernovae luminosities on their host galaxies , 2010, 1003.5119.
[23] Adam G. Riess,et al. THE EFFECT OF HOST GALAXIES ON TYPE Ia SUPERNOVAE IN THE SDSS-II SUPERNOVA SURVEY , 2010, 1005.4687.
[24] Edward J. Wollack,et al. SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.
[25] P. E. Nugent,et al. K-corrections and spectral templates of Type Ia supernovae , 2007 .
[26] Mark Sullivan,et al. Predicted and Observed Evolution in the Mean Properties of Type Ia Supernovae with Redshift , 2007 .
[27] Alexander S. Szalay,et al. Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 luminous red galaxies (vol 404, pg 60, 2010) , 2009, 0907.1659.
[28] J. Neill,et al. Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification , 2005, astro-ph/0509195.
[29] Stefano Casertano,et al. A REDETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE FROM A DIFFERENTIAL DISTANCE LADDER , 2009, 0905.0695.
[30] Shinji Tsujikawa,et al. Dynamics of dark energy , 2006 .
[31] M. Sullivan,et al. THE MEAN TYPE IA SUPERNOVA SPECTRUM OVER THE PAST NINE GIGAYEARS , 2009, 0901.2476.
[32] A. Lewis,et al. Crossing the phantom divide with parametrized post-Friedmann dark energy , 2008, 0808.3125.
[33] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[34] Mark Sullivan,et al. The Progenitors of Type Ia Supernovae , 2008, 0806.3729.
[35] R. Ellis,et al. Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.
[36] S. C. Keller,et al. The SkyMapper Telescope and The Southern Sky Survey , 2007, Publications of the Astronomical Society of Australia.
[37] Arlo U. Landolt,et al. UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .
[38] J. Frieman,et al. Dark Energy and the Accelerating Universe , 2008, 0803.0982.
[39] Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background: Significance and Consequences for Cosmology , 2001, astro-ph/0105296.
[40] M. Sullivan,et al. Supernova Legacy Survey: using spectral signatures to improve Type Ia supernovae as distance indicators , 2010, 1008.2308.
[41] M. Sullivan,et al. The ESO/VLT 3rd year Type Ia supernova data set from the supernova legacy survey , 2009, 0909.3316.
[42] N. B. Suntzeff,et al. The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry , 2007, astro-ph/0701043.
[43] E. Linder. Exploring the expansion history of the universe. , 2002, Physical review letters.
[44] M. Sullivan,et al. The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints , , 2010, 1010.4743.
[45] M. Sullivan,et al. SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.
[46] Stefano Casertano,et al. A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.
[47] M. Phillips,et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.
[48] R. Ellis,et al. Verifying the Cosmological Utility of Type Ia Supernovae: Implications of a Dispersion in the Ultraviolet Spectra , 2007, 0710.3896.
[49] R. Nichol,et al. COSMOLOGY WITH PHOTOMETRICALLY CLASSIFIED TYPE Ia SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY , 2012, 1211.4480.
[50] J. Neill,et al. Photometric Selection of High-Redshift Type Ia Supernova Candidates , 2005, astro-ph/0510857.
[51] F. Mannucci,et al. The Supernova rate per unit mass , 2004, astro-ph/0411450.
[52] R. Nichol,et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.
[53] Kevin Krisciunas,et al. THE CARNEGIE SUPERNOVA PROJECT: ANALYSIS OF THE FIRST SAMPLE OF LOW-REDSHIFT TYPE-Ia SUPERNOVAE , 2009, 0910.3317.
[54] I. Hook,et al. REAL-TIME ANALYSIS AND SELECTION BIASES IN THE SUPERNOVA LEGACY SURVEY , 2010, 1006.2254.
[55] William Press,et al. A Precise Distance Indicator: Type Ia Supernova Multicolor Light-Curve Shapes , 1996, astro-ph/9604143.
[56] Nicholas B. Suntzeff,et al. A Hubble diagram of distant type IA supernovae , 1993 .
[57] S. E. Woosley,et al. The diversity of type Ia supernovae from broken symmetries , 2009, Nature.
[58] M. Sullivan,et al. Photometric calibration of the Supernova Legacy Survey fields , 2006, astro-ph/0610397.
[59] et al,et al. UBVRI Light Curves of 44 Type Ia Supernovae , 2005 .
[60] Adam G. Riess,et al. BVRI Light Curves for 22 Type Ia Supernovae , 1998 .
[61] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[62] Spectra of high-redshift type Ia supernovae and a comparison with their low-redshift counterparts , 2005, astro-ph/0509041.
[63] Timothy D. Brandt,et al. THE AGES OF TYPE Ia SUPERNOVA PROGENITORS , 2010, 1002.0848.
[64] M. Sullivan,et al. SiFTO: An Empirical Method for Fitting SN Ia Light Curves , 2008, 0803.3441.
[65] Alexander S. Szalay,et al. Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.
[66] R. Ellis,et al. The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.
[67] J. Vanderplas,et al. FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.
[68] Berkeley,et al. SNLS Spectroscopy: Testing for Evolution in Type Ia Supernovae , 2007, 0709.0859.
[69] Andrew J. Connolly,et al. Measuring the Matter Density Using Baryon Oscillations in the SDSS , 2006, astro-ph/0608635.
[70] F. Timmes,et al. ON VARIATIONS OF THE BRIGHTNESS OF TYPE Ia SUPERNOVAE WITH THE AGE OF THE HOST STELLAR POPULATION , 2010, 1007.0910.
[71] Mansi M. Kasliwal,et al. HUBBLE SPACE TELESCOPE STUDIES OF NEARBY TYPE Ia SUPERNOVAE: THE MEAN MAXIMUM LIGHT ULTRAVIOLET SPECTRUM AND ITS DISPERSION , 2010, 1010.2211.
[72] A. Lewis,et al. Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.
[73] I. Hook,et al. Constraining dark matter halo properties using lensed Supernova Legacy Survey supernovae , 2010, 1002.1374.
[74] M. Chevallier,et al. ACCELERATING UNIVERSES WITH SCALING DARK MATTER , 2000, gr-qc/0009008.
[75] Daniel Kasen,et al. MEASURING EJECTA VELOCITY IMPROVES TYPE Ia SUPERNOVA DISTANCES , 2010, 1011.4517.
[76] W. Hillebrandt,et al. Type IA Supernova Explosion Models , 2000 .
[77] Mamoru Doi,et al. THE SLOAN DIGITAL SKY SURVEY-II: PHOTOMETRY AND SUPERNOVA IA LIGHT CURVES FROM THE 2005 DATA , 2008, 0908.4277.
[78] Observational Constraints on Dark Energy and Cosmic Curvature , 2007, astro-ph/0703780.
[79] Ernest E. Croner,et al. The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.
[80] C. Jackson,et al. Dual-population radio source unification , 1997 .
[81] Armin Rest,et al. CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA , 2009, 0901.4787.
[82] J. Mathis,et al. The relationship between infrared, optical, and ultraviolet extinction , 1989 .
[83] W. M. Wood-Vasey,et al. Using Line Profiles to Test the Fraternity of Type Ia Supernovae at High and Low Redshifts , 2005, astro-ph/0510089.