Isosorbide as a renewable platform chemical for versatile applications--quo vadis?

Isosorbide is a platform chemical of considerable importance for the future replacement of fossil resource-based products. Applications as monomers and building blocks for new polymers and functional materials, new organic solvents, for medical and pharmaceutical applications, and even as fuels or fuel additives are conceivable. The conversion of isosorbide to valuable derivatives by functionalization or substitution of the hydroxyl groups is difficult because of the different configurations of the 2- and 5-positions and the resulting different reactivity and steric hindrance of the two hydroxyl groups. Although a substantial amount of work has been published using exclusively the endo or exo derivatives isomannide and isoidide, respectively, as starting material, a considerable effort is still necessary to transfer and adapt these methods for the efficient conversion of isosorbide. This Minireview deals with all aspects of isosorbide chemistry, which includes its production by catalytic processes, special properties, and chemical transformations for its utilization in biogenic polymers and other applications of interest.

[1]  F. Bachmann,et al.  Synthesis of Novel Polyurethanes and Polyureas by Polyaddition Reactions of Dianhydrohexitol Configurated Diisocyanates , 2001 .

[2]  M. Martínez,et al.  Lipase-catalyzed synthesis of isosorbide monoricinoleate: process optimization by response surface methodology. , 2010, Bioresource technology.

[3]  Carl Hütter Aussichten der Braunkohlen‐Knorpeltrocknung und ihre wirtschaftliche Bedeutung , 1925 .

[4]  C. J. Carr,et al.  Sugar Alcohols. XXI. A Study of the Effect of the Anhydrides of Sorbitol on the Dissociation Constant of Boric Acid. , 1940 .

[5]  Ziniu Yu,et al.  Dissolution of cellulose with ionic liquids and its application : a mini-review , 2006 .

[6]  C. Pinel,et al.  Non-catalyzed and Pt/γ-Al2O3-catalyzed hydrothermal cellulose dissolution–conversion: influence of the reaction parameters and analysis of the unreacted cellulose , 2009 .

[7]  M. Ballauff,et al.  Synthesis and properties of high‐molecular‐weight polyesters based on 1,4:3,6‐dianhydrohexitols and terephthalic acid , 1993 .

[8]  Franco Lombardo,et al.  Trend Analysis of a Database of Intravenous Pharmacokinetic Parameters in Humans for 670 Drug Compounds , 2008, Drug Metabolism and Disposition.

[9]  C. Paolucci,et al.  Dihyro- and tetrahydrofuran building blocks from 1,4:3,6-dianhydromannitol. 1. Synthesis of (1S,5R,7R)-endo-(-)- and (1S,5R,7S)-(-)-exo-brevicomin and (R)-(+)-dodecanolide , 1993 .

[10]  Ferdi Schüth,et al.  Design of solid catalysts for the conversion of biomass , 2009 .

[11]  Roberto Rinaldi,et al.  Instantaneous dissolution of cellulose in organic electrolyte solutions. , 2011, Chemical communications.

[12]  Z. Mouloungui,et al.  Synthesis of new diesters of 1,4:3,6-dianhydro-d-glucitol by esterification with fatty acid chlorides , 1998 .

[13]  R. Palkovits,et al.  Hydrogenolysis of cellulose combining mineral acids and hydrogenation catalysts , 2010 .

[14]  M. Shirai,et al.  Sorbitol dehydration in high temperature liquid water , 2011 .

[15]  M. Guzel,et al.  Exploiting p shielding interactions in a Z 6 arene-complexed chiral auxiliary , 2000 .

[16]  P. Sun,et al.  H3PW12O40/SiO2 for sorbitol dehydration to isosorbide: High efficient and reusable solid acid catalyst , 2011 .

[17]  J. Galy,et al.  Preparation and properties of bio-based epoxy networks derived from isosorbide diglycidyl ether , 2011 .

[18]  G. Zeeman,et al.  Pretreatments to enhance the digestibility of lignocellulosic biomass. , 2009, Bioresource technology.

[19]  J. Pascault,et al.  Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review , 2010 .

[20]  P. Jacobs,et al.  Recent Advances in the Catalytic Conversion of Cellulose , 2011 .

[21]  Pierre Jacobs,et al.  Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon. , 2010, Chemical communications.

[22]  J. Aubry,et al.  Solubilizing and Hydrotropic Properties of Isosorbide Monoalkyl- and Dimethyl-Ethers , 2009 .

[23]  Daan S. van Es,et al.  Isohexide derivatives from renewable resources as chiral building blocks. , 2011, ChemSusChem.

[24]  F. Bachmann,et al.  Synthesis and properties of polyamides derived from anhydro‐ and dianhydroalditols , 1991 .

[25]  George W. Huber,et al.  Synergien zwischen Bio- und Ölraffinerien bei der Herstellung von Biomassetreibstoffen , 2007 .

[26]  A. Corma,et al.  Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. , 2006, Chemical reviews.

[27]  Jyri-Pekka Mikkola,et al.  Dissolution of lignocellulosic materials and its constituents using ionic liquids - a review , 2010 .

[28]  L. Wiggins 2. The anhydrides of polyhydric alcohols. Part I. The constitution of isomannide , 1945 .

[29]  A. Gaset,et al.  Biomass as a source of chemicals. VI. Synthesis of new polyfunctional ethers of isosorbide in solid-liquid heterogeneous mixtures , 1986 .

[30]  Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts , 2011 .

[31]  A. Loupy,et al.  Asymmetric Diels-Alder: Monobenzylated isosorbide and isomannide as highly effective chiral auxiliaries , 1996 .

[32]  J. Dupont,et al.  Ionic liquid-phase asymmetric catalytic hydrogenation: hydrogen concentration effects on enantioselectivity , 2001 .

[33]  V. Puranik,et al.  Asymmetric synthesis of β-lactams by [2+2] cycloaddition using 1,4:3,6-dianhydro-d-glucitol (isosorbide) derived chiral pools , 2007 .

[34]  Avelino Corma,et al.  Synergies between bio- and oil refineries for the production of fuels from biomass. , 2007, Angewandte Chemie.

[35]  N. Bar,et al.  Enzymatic preparation of isomerically pure 1,4:3,6-dianhydro-D-glucitol monoacetates - precursors for isoglucitol 2- and 5-mononitrates , 1992 .

[36]  R. Palkovits Cellulose and Heterogeous Catalysis - A Combination for Future , 2011 .

[37]  J. Thiem,et al.  Synthesis and properties of polyurethanes derived from diaminodianhydroalditols , 1986 .

[38]  R. Hockett,et al.  Hexitol anhydrides; the structure of isosorbide, a crystalline dianhydrosorbitol. , 1946, Journal of the American Chemical Society.

[39]  M. Ballauff,et al.  Synthesis and thermal analysis of copolyesters deriving from 1,4:3,6-dianhydrosorbitol, ethylene glycol, and terephthalic acid , 1996 .

[40]  Kunio Arai,et al.  Dissolution and Hydrolysis of Cellulose in Subcritical and Supercritical Water , 2000 .

[41]  T. Shen,et al.  Syntheses of D- and L-2,6-diheterobicyclo [3.3.0]octanes , 1956 .

[42]  G. Vo‐Thanh,et al.  Chiral ionic liquids derived from isosorbide: synthesis, properties and applications in asymmetric synthesis , 2009 .

[43]  D. D. De Vos,et al.  Catalytic hydrogenolysis of aromatic ketones in mixed choline-betainium ionic liquids. , 2008, ChemSusChem.

[44]  J. Thiem,et al.  Untersuchungen zur Synthese von Polyethern aus Anhydropolyolen , 1989 .

[45]  R. Palkovits,et al.  Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols. , 2011, Chemical communications.

[46]  A. B. Foster,et al.  Aspects of stereochemistry—I : Properties and reactions of some diols , 1958 .

[47]  S. Chatti,et al.  Synthesis and characterization of new polyamides derived from di(4-cyanophenyl)isosorbide , 2007 .

[48]  A. Petit,et al.  Synthesis of benzoyl and dodecanoyl derivatives from protected carbohydrates under focused microwave irradiation , 1998 .

[49]  R. Palkovits,et al.  Cellulose-based sustainable polymers: state of the art and future trends. , 2011, Macromolecular rapid communications.

[50]  C. Paolucci,et al.  Alkyllithium-promoted ring fissions of halides derived from 1,4:3,6-dianhydrohexitols , 1989 .

[51]  A. Fukuoka,et al.  Cracking of Cellulose over Supported Metal Catalysts , 2007 .

[52]  Michael Jaffe,et al.  Overview of advances in sugar‐based polymers , 2011 .

[53]  A. Loupy,et al.  Selective alkylations of 1,4:3,6-dianhydro-d-glucitol (isosorbide) , 1994 .

[54]  N. K. Matheson,et al.  199. The replacement of secondary tosyloxy-groups by iodine in polyhydroxy-compounds , 1952 .

[55]  A. Loupy,et al.  Synthesis of diethers derived from dianhydrohexitols by phase transfer catalysis under microwave , 2000 .

[56]  Peter Stoss,et al.  Regioselektive Acylierung von 1,4:3,6-Dianhydro-D-glucit , 1987 .

[57]  Regina Palkovits,et al.  Which controls the depolymerization of cellulose in ionic liquids: the solid acid catalyst or cellulose? , 2010, ChemSusChem.

[58]  J. Moulijn,et al.  Cellulose conversion to isosorbide in molten salt hydrate media. , 2010, ChemSusChem.

[59]  N. Baggett,et al.  Asymmetric reduction of ketones by using complexes of lithium tetrahydridoaluminate(III) with 1,4:3,6-dianhydro-D-mannitol and 1,3:4,6-di-O-benzylidene-D-mannitol , 1977 .

[60]  J. Aubry,et al.  Bitumen fluxing properties of a new class of sustainable solvents: The isosorbide di-alkyl ethers , 2010 .

[61]  A. Mcinnes,et al.  THE PREFERENTIAL TOSYLATION OF THE ENDO-5-HYDROXYL GROUP OF 1,4;3,6-DIANHYDRO-D-GLUCITOL , 1960 .

[62]  D. D. De Vos,et al.  Reductive splitting of cellulose in the ionic liquid 1-butyl-3-methylimidazolium chloride. , 2010, ChemSusChem.

[63]  J. Aubry,et al.  Isosorbide mono- and di-alkyl ethers, a new class of sustainable coalescents for water-borne paints , 2010 .

[64]  J. Aubry,et al.  Amphiphilic properties of hydrotropes derived from isosorbide: endo/exo isomeric effects and temperature dependence. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[65]  J. Aubry,et al.  Telomerisation of 1,3-butadiene with 1,4:3,6-dianhydrohexitols: an atom-economic and selective synthesis of amphiphilic monoethers from agro-based diols. , 2011, ChemSusChem.

[66]  R. Wegh,et al.  Synthesis and Properties of Photoisomerizable Derivatives of Isosorbide and Their Use in Cholesteric Filters , 2005 .

[67]  J. Aubry,et al.  Isosorbide as a novel polar head derived from renewable resources. Application to the design of short-chain amphiphiles with hydrotropic properties , 2008 .

[68]  M. Meier,et al.  Use of a renewable and degradable monomer to study the temperature-dependent olefin isomerization during ADMET polymerizations. , 2009, Journal of the American Chemical Society.

[69]  A. Hirao,et al.  Asymmetric reduction of ketones with sodium borohydride in the presence of hydroxymonosaccharide derivatives , 1979 .

[70]  George W. Huber,et al.  Aqueous-phase hydrodeoxygenation of sorbitol with Pt/SiO2―Al2O3: Identification of reaction intermediates , 2010 .

[71]  Regina Palkovits,et al.  Depolymerization of cellulose using solid catalysts in ionic liquids. , 2008, Angewandte Chemie.

[72]  A. Loupy,et al.  Synthesis of New Diols Derived from Dianhydrohexitols Ethers under Microwave-Assisted Phase Transfer Catalysis , 2000 .

[73]  M. T. Reetz,et al.  Neue Diphosphitliganden für die katalytische asymmetrische Hydrierung: die entscheidende Rolle von konformationsenantiomeren Diolen , 1999 .

[74]  A. Loupy,et al.  Synthesis and characterization of new polyamides based on Diphenylaminoisosorbide , 2005 .

[75]  M. T. Reetz,et al.  KINETISCHE EINFLUSSE AUF DIE ENANTIOSELEKTIVITAT VON NICHTDIASTEREOMERENREINEN KATALYSATORMISCHUNGEN , 1999 .

[76]  A. Loupy,et al.  Synthesis of new chiral auxiliaries derived from isosorbide , 1993 .

[77]  G. Vo‐Thanh,et al.  Synthesis of novel chiral imidazolium-based ionic liquids derived from isosorbide and their applications in asymmetric aza Diels–Alder reaction , 2009 .

[78]  T. Shen,et al.  The Detosylation of 1,4:3,6-Dianhydrohexitol Ditosylates and Syntheses of 1,4:2,5:3,6-Trianhydro-D-Mannitol , 1956 .

[79]  A. Corma,et al.  Chemical routes for the transformation of biomass into chemicals. , 2007, Chemical reviews.

[80]  L. Lynd,et al.  Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems , 2004, Biotechnology and bioengineering.

[81]  T. Shen,et al.  The Stereochemistry of 1,4: 3,6-Dianhydrohexitol Derivatives1 , 1956 .

[82]  Neugebauer,et al.  Kinetic Influences on Enantioselectivity for Non-Diastereopure Catalyst Mixtures. , 1999, Angewandte Chemie.

[83]  L. Wiggins,et al.  78. The anhydrides of polyhydric alcohols. Part V. 2 : 5-Diamino 1 : 4–3 : 6-dianhydro mannitol and sorbitol and their sulphanilamide derivatives , 1946 .

[84]  E. Anslyn,et al.  Conversion of cellulose to hexitols catalyzed by ionic liquid-stabilized ruthenium nanoparticles and a reversible binding agent. , 2010, ChemSusChem.

[85]  M. Reetz,et al.  New Diphosphite Ligands for Catalytic Asymmetric Hydrogenation: The Crucial Role of Conformationally Enantiomeric Diols , 1999 .

[86]  J. Plenkiewicz,et al.  Lipase-Mediated Resolutions of 1-Aryl-3-Buten-1-ols , 1997 .

[87]  H. Neumann,et al.  Improved ruthenium-catalyzed amination of alcohols with ammonia: synthesis of diamines and amino esters. , 2011, Angewandte Chemie.

[88]  A. Marra,et al.  Synthesis and applications of ionic liquids derived from natural sugars. , 2011, Topics in current chemistry.

[89]  Guy Fleche,et al.  Isosorbide. Preparation, Properties and Chemistry , 1986 .