Meal detection and carbohydrate estimation based on a feedback scheme with application to the artificial pancreas

[1]  J. Shaw,et al.  IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. , 2011, Diabetes research and clinical practice.

[2]  A. Fougner,et al.  A Review of the Current Challenges Associated with the Development of an Artificial Pancreas by a Double Subcutaneous Approach , 2017, Diabetes Therapy.

[3]  Niels Kjølstad Poulsen,et al.  Sensor-based detection and estimation of meal carbohydrates for people with diabetes , 2019, Biomed. Signal Process. Control..

[4]  Claude H. Moog,et al.  Positively invariant sets of a T1DM model: Hypoglycemia prediction and avoidance , 2019, J. Frankl. Inst..

[5]  Øyvind Stavdahl,et al.  Pattern Recognition Reveals Characteristic Postprandial Glucose Changes: Non-Individualized Meal Detection in Diabetes Mellitus Type 1 , 2020, IEEE Journal of Biomedical and Health Informatics.

[6]  Neha Parikh,et al.  Sensor-Augmented Pump-Based Customized Mathematical Model for Type 1 Diabetes. , 2018, Diabetes technology & therapeutics.

[7]  Ali Cinar,et al.  Meal Detection and Carbohydrate Estimation Using Continuous Glucose Sensor Data , 2017, IEEE Journal of Biomedical and Health Informatics.

[8]  Josep Vehí,et al.  Unannounced Meals in the Artificial Pancreas: Detection Using Continuous Glucose Monitoring , 2018, Sensors.

[9]  C. Cobelli,et al.  In Silico Preclinical Trials: A Proof of Concept in Closed-Loop Control of Type 1 Diabetes , 2009, Journal of diabetes science and technology.

[10]  R. Hovorka,et al.  Coming of age: the artificial pancreas for type 1 diabetes , 2016, Diabetologia.

[11]  Eyal Dassau,et al.  Periodic-Zone Model Predictive Control for Diurnal Closed-Loop Operation of an Artificial Pancreas , 2013, Journal of diabetes science and technology.

[12]  Claude H. Moog,et al.  A Long-Term Model of the Glucose–Insulin Dynamics of Type 1 Diabetes , 2015, IEEE Transactions on Biomedical Engineering.

[13]  A. Vambergue,et al.  Treatment of diabetes mellitus using an external insulin pump in clinical practice. , 2008, Diabetes & Metabolism.

[14]  Malgorzata E. Wilinska,et al.  Modeling Day-to-Day Variability of Glucose–Insulin Regulation Over 12-Week Home Use of Closed-Loop Insulin Delivery , 2017, IEEE Transactions on Biomedical Engineering.

[15]  C. C. Palerm,et al.  A Run-to-Run Control Strategy to Adjust Basal Insulin Infusion Rates in Type 1 Diabetes. , 2008, Journal of process control.

[16]  Eyal Dassau,et al.  Twelve-Week 24/7 Ambulatory Artificial Pancreas With Weekly Adaptation of Insulin Delivery Settings: Effect on Hemoglobin A1c and Hypoglycemia , 2017, Diabetes Care.

[17]  Marios Anthimopoulos,et al.  Computer Vision-Based Carbohydrate Estimation for Type 1 Patients With Diabetes Using Smartphones , 2015, Journal of diabetes science and technology.

[18]  Josep Vehí,et al.  Automated blood glucose control in type 1 diabetes: A review of progress and challenges. , 2017, Endocrinologia, diabetes y nutricion.

[19]  A. Brazeau,et al.  Carbohydrate counting accuracy and blood glucose variability in adults with type 1 diabetes. , 2013, Diabetes research and clinical practice.

[20]  F. Doyle,et al.  Design of the Glucose Rate Increase Detector , 2014, Journal of diabetes science and technology.

[21]  H Peter Chase,et al.  Missed insulin meal boluses and elevated hemoglobin A1c levels in children receiving insulin pump therapy. , 2004, Pediatrics.

[22]  Garry M. Steil,et al.  Identification of Intraday Metabolic Profiles during Closed-Loop Glucose Control in Individuals with Type 1 Diabetes , 2009, Journal of diabetes science and technology.

[23]  C. Cobelli,et al.  The UVA/PADOVA Type 1 Diabetes Simulator , 2014, Journal of diabetes science and technology.

[24]  S. Delurgio,et al.  Frequency of mealtime insulin bolus as a proxy measure of adherence for children and youths with type 1 diabetes mellitus. , 2013, Diabetes technology & therapeutics.

[25]  P. Rivadeneira,et al.  Nuevas Estrategias de Control Glucémico en Pacientes con Diabetes Mellitus Tipo 1 , 2019, Revista Iberoamericana de Automática e Informática industrial.

[26]  John Walsh,et al.  Guidelines for Insulin Dosing in Continuous Subcutaneous Insulin Infusion Using New Formulas from a Retrospective Study of Individuals with Optimal Glucose Levels , 2010, Journal of diabetes science and technology.

[27]  Sergei V. Pereverzyev,et al.  A meta-learning approach to the regularized learning - Case study: Blood glucose prediction , 2012, Neural Networks.