Advice Lower Bounds for the Dense Model Theorem

We prove a lower bound on the amount of nonuniform advice needed by black-box reductions for the Dense Model Theorem of Green, Tao, and Ziegler, and of Reingold, Trevisan, Tulsiani, and Vadhan. The latter theorem roughly says that for every distribution <i>D</i> that is Δ-dense in a distribution that is <i>ε</i>′-indistinguishable from uniform, there exists a “dense model” for <i>D</i>, that is, a distribution that is <i>Δ</i>-dense in the uniform distribution and is <i>ε</i>-indistinguishable from <i>D</i>. This <i>ε</i>-indistinguishability is with respect to an arbitrary small class of functions <i>F</i>. For the natural case where <i>ε</i>′ ≥ Ω(<i>εΔ</i>) and <i>ε</i> ≥ <i>Δ</i><i>O</i>(1), our lower bound implies that Ω(√(1/<i>ε</i>) log(1/<i>Δ</i>)·log|<i>F</i>|) advice bits are necessary for a certain type of reduction that establishes a stronger form of the Dense Model Theorem (and which encompasses all known proofs of the Dense Model Theorem in the literature). There is only a polynomial gap between our lower bound and the best upper bound for this case (due to Zhang), which is <i>O</i>((1/<i>ε</i>2)log(1/<i>Δ</i>)·log|<i>F</i>|). Our lower bound can be viewed as an analogue of list size lower bounds for list-decoding of error-correcting codes, but for “dense model decoding” instead.

[1]  Krzysztof Pietrzak,et al.  How to Fake Auxiliary Input , 2014, IACR Cryptol. ePrint Arch..

[2]  Venkatesan Guruswami,et al.  List decoding from erasures: bounds and code constructions , 2001, IEEE Trans. Inf. Theory.

[3]  Avi Wigderson,et al.  Computational Analogues of Entropy , 2003, RANDOM-APPROX.

[4]  Julia Wolf,et al.  Linear forms and quadratic uniformity for functions on ℤN , 2010, 1002.2210.

[5]  Rocco A. Servedio,et al.  Boosting and hard-core sets , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[6]  Chi-Jen Lu,et al.  Complexity of Hard-Core Set Proofs , 2011, computational complexity.

[7]  Emanuele Viola,et al.  Hardness amplification proofs require majority , 2008, SIAM J. Comput..

[8]  T. Tao,et al.  The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.

[9]  Guy N. Rothblum,et al.  The Complexity of Local List Decoding , 2008, APPROX-RANDOM.

[10]  P. Erdös,et al.  Families of finite sets in which no set is covered by the union ofr others , 1985 .

[11]  Jiapeng Zhang On the query complexity for Showing Dense Model , 2011, Electron. Colloquium Comput. Complex..

[12]  Avi Wigderson,et al.  Uniform direct product theorems: simplified, optimized, and derandomized , 2008, SIAM J. Comput..

[13]  An arithmetic transference proof of a relative Szemerédi theorem , 2013, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  Madhur Tulsiani,et al.  Regularity, Boosting, and Efficiently Simulating Every High-Entropy Distribution , 2009, 2009 24th Annual IEEE Conference on Computational Complexity.

[15]  Omer Reingold,et al.  Computational Differential Privacy , 2009, CRYPTO.

[16]  Russell Impagliazzo,et al.  Approximately List-Decoding Direct Product Codes and Uniform Hardness Amplification , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[17]  Venkatesan Guruswami,et al.  A Lower Bound on List Size for List Decoding , 2005, IEEE Trans. Inf. Theory.

[18]  Ronen Shaltiel,et al.  Lower Bounds on the Query Complexity of Non-uniform and Adaptive Reductions Showing Hardness Amplification , 2012, computational complexity.

[19]  Noam Nisan,et al.  Hardness vs Randomness , 1994, J. Comput. Syst. Sci..

[20]  Chi-Jen Lu,et al.  On the Complexity of Hardness Amplification , 2008, IEEE Trans. Inf. Theory.

[21]  W. T. Gowers,et al.  Decompositions, approximate structure, transference, and the Hahn–Banach theorem , 2008, 0811.3103.

[22]  Craig Gentry,et al.  Separating succinct non-interactive arguments from all falsifiable assumptions , 2011, IACR Cryptol. ePrint Arch..

[23]  Thomas Watson Query Complexity in Errorless Hardness Amplification , 2011, APPROX-RANDOM.

[24]  W. T. Gowers,et al.  Linear Forms and Higher-Degree Uniformity for Functions On $${\mathbb{F}^{n}_{p}}$$ , 2010, 1002.2208.

[25]  Noam Nisan,et al.  On Yao's XOR-Lemma , 1995, Electron. Colloquium Comput. Complex..

[26]  Russell Impagliazzo,et al.  Hard-core distributions for somewhat hard problems , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[27]  Leonid A. Levin,et al.  One-way functions and pseudorandom generators , 1985, STOC '85.

[28]  Madhur Tulsiani,et al.  Dense Subsets of Pseudorandom Sets , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[29]  Boaz Barak,et al.  The uniform hardcore lemma via approximate Bregman projections , 2009, SODA.

[30]  Stefan Dziembowski,et al.  Leakage-Resilient Cryptography , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[31]  T. Tao,et al.  The primes contain arbitrarily long polynomial progressions , 2006, math/0610050.

[32]  Thomas Watson Advice Lower Bounds for the Dense Model Theorem , 2013, STACS.

[33]  Rocco A. Servedio,et al.  Boosting and Hard-Core Set Construction , 2003, Machine Learning.