The topological invariance of Lyapunov exponents in embedded dynamics

[1]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[2]  M. Raghunathan A proof of Oseledec’s multiplicative ergodic theorem , 1979 .

[3]  D. Ruelle Ergodic theory of differentiable dynamical systems , 1979 .

[4]  R. Mañé,et al.  On the dimension of the compact invariant sets of certain non-linear maps , 1981 .

[5]  F. Takens Detecting strange attractors in turbulence , 1981 .

[6]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[7]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[8]  Sawada,et al.  Measurement of the Lyapunov spectrum from a chaotic time series. , 1985, Physical review letters.

[9]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[10]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[11]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[12]  W. Brock Distinguishing random and deterministic systems: Abridged version , 1986 .

[13]  J. Kurths,et al.  An attractor in a solar time series , 1987 .

[14]  W. Brock,et al.  Is the business cycle characterized by deterministic chaos , 1988 .

[15]  Thanasis Stengos,et al.  The stability of Canadian macroeconomic data as measured by the largest Lyapunov exponent , 1988 .

[16]  K. Briggs An improved method for estimating Liapunov exponents of chaotic time series , 1990 .

[17]  U. Parlitz,et al.  Lyapunov exponents from time series , 1991 .

[18]  A. Gallant,et al.  Convergence rates and data requirements for Jacobian-based estimates of Lyapunov exponents from data , 1991 .

[19]  R. Eykholt,et al.  Estimating the Lyapunov-exponent spectrum from short time series of low precision. , 1991, Physical review letters.

[20]  H. Abarbanel,et al.  LYAPUNOV EXPONENTS IN CHAOTIC SYSTEMS: THEIR IMPORTANCE AND THEIR EVALUATION USING OBSERVED DATA , 1991 .

[21]  Brown,et al.  Computing the Lyapunov spectrum of a dynamical system from an observed time series. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[22]  Henry D. I. Abarbanel,et al.  Variation of Lyapunov exponents on a strange attractor , 1991 .

[23]  R. Gencay,et al.  An algorithm for the n Lyapunov exponents of an n -dimensional unknown dynamical system , 1992 .

[24]  A. Gallant,et al.  Estimating the Lyapunov Exponent of a Chaotic System with Nonparametric Regression , 1992 .

[25]  R. Gencay,et al.  Lyapunov Exponents as a Nonparametric Diagnostic for Stability Analysis , 1992 .

[26]  Henry D. I. Abarbanel,et al.  Local Lyapunov exponents computed from observed data , 1992 .

[27]  Roger A. Pielke,et al.  EXTRACTING LYAPUNOV EXPONENTS FROM SHORT TIME SERIES OF LOW PRECISION , 1992 .

[28]  Ulrich Parlitz,et al.  Identification of True and Spurious Lyapunov Exponents from Time Series , 1992 .

[29]  Lyapunov Spectrum of the Maps Generating Identical Attractors , 1993 .

[30]  Ramazan Gençay,et al.  Nonlinear prediction of noisy time series with feedforward networks , 1994 .