A new approach of goodness-of-fit testing for exponentiated laws applied to the generalized Rayleigh distribution

Goodness-of-fit statistics are considered which are appropriate for generalized families of distributions, resulting from exponentiation. The tests employ a variation of the data determined by the cumulative distribution function of the corresponding non-generalized distribution. The resulting test, which makes use of the Mellin transform of the transformed data, is shown to be consistent. Simulation results for the case of the generalized Rayleigh distribution show that the proposed test compares well with standard methods based on the empirical distribution function.

[1]  N. Henze,et al.  Tests of Fit for Exponentiality based on the Empirical Laplace Transform , 2002 .

[2]  G. Jogesh Babu,et al.  Goodness-of-fit tests when parameters are estimated , 2004 .

[3]  Lawrence M. Leemis,et al.  Reliability: Probabilistic Models and Statistical Methods , 1994 .

[4]  W. J. Padgett,et al.  Some properties of a scaled Burr type X distribution , 2005 .

[5]  Alan D. Hutson,et al.  The exponentiated weibull family: some properties and a flood data application , 1996 .

[6]  Simos G. Meintanis,et al.  Tests for normal mixtures based on the empirical characteristic function , 2005, Comput. Stat. Data Anal..

[7]  Simos G. Meintanis,et al.  Estimation in the three-parameter inverse Gaussian distribution , 2005, Comput. Stat. Data Anal..

[8]  W. Stute,et al.  Bootstrap based goodness-of-fit-tests , 1993 .

[9]  A. Zayed Handbook of Function and Generalized Function Transformations , 1996 .

[10]  N. Henze,et al.  Goodness-of-Fit Tests for the Inverse Gaussian Distribution Based on the Empirical Laplace Transform , 2002 .

[11]  Ludwig Baringhaus,et al.  A goodness of fit test for the Poisson distribution based on the empirical generating function , 1992 .

[12]  W. J. Padgett,et al.  Inference for Reliability and Stress-Strength for a Scaled Burr Type X Distribution , 2001, Lifetime data analysis.

[13]  B. Klar Tests for exponentiality against theM andLM-Classes of life distributions , 2005 .

[14]  J. L. Folks,et al.  The Inverse Gaussian Distribution as a Lifetime Model , 1977 .

[15]  Debasis Kundu,et al.  Generalized exponential distribution: Bayesian estimations , 2008, Comput. Stat. Data Anal..

[16]  Debasis Kundu,et al.  Generalized Rayleigh distribution: different methods of estimations , 2005, Comput. Stat. Data Anal..

[17]  Debasis Kundu,et al.  A convenient way of generating gamma random variables using generalized exponential distribution , 2007, Comput. Stat. Data Anal..

[18]  D. Kundu,et al.  EXPONENTIATED EXPONENTIAL FAMILY: AN ALTERNATIVE TO GAMMA AND WEIBULL DISTRIBUTIONS , 2001 .

[19]  A. Quiroz,et al.  Using the empirical moment generating function in testing for the Weibull and the type I extreme value distributions , 2005 .