Fluorite-type Tm3+:KY3F10: A promising crystal for watt-level lasers at ∼1.9 μm

Abstract Tm3+-doped cubic potassium yttrium fluoride, KY3F10, is a promising laser crystal for efficient watt-level lasers at ∼1.9 μm because of the relatively easy crystal growth by the Czochralski method, advantageous thermo-optical properties, high available Tm3+ doping levels and very efficient cross-relaxation mechanism. A compact diode-pumped 8 at.% Tm3+:KY3F10 laser generated 1.85 W at 1891 nm with a slope efficiency of 65.2% and a laser threshold of 450 mW. A negative thermal lens was detected in this crystal owing to the negative dn/dT coefficient (−8.9 × 10−6 K−1). Passive Q-switching of the Tm3+:KY3F10 laser by single-walled carbon nanotube saturable absorber was demonstrated yielding 13.2 μJ/490 ns pulses at a repetition rate of 58 kHz.

[1]  P. Koopmann,et al.  2 µm Laser Sources and Their Possible Applications , 2010 .

[2]  M. Tonelli,et al.  Continuous-wave mid-infrared laser operation of Tm3+:KY3F10 at 2.3  μm. , 2019, Optics letters.

[3]  Qinan Mao,et al.  Lanthanide-doped KGd3F10 nanocrystals embedded glass ceramics: Self-crystallization, optical properties and temperature sensing , 2018, Journal of Alloys and Compounds.

[4]  Antonio Lucianetti,et al.  Highly Efficient, Compact Tm3+:RE2O3 (RE = Y, Lu, Sc) Sesquioxide Lasers Based on Thermal Guiding , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  M. Tonelli,et al.  Efficient, diode-pumped Tm(3)+:BaY(2)F(8) vibronic laser. , 2004, Optics express.

[6]  Jun Xu,et al.  Performance of diode-pumped Tm3+ :Sc2SiO5 crystal passively Q-switched 2 mu m laser , 2014 .

[7]  Xavier Mateos,et al.  Modelling of graphene Q-switched Tm lasers , 2017 .

[8]  B. Mesfin,et al.  Enhanced Emission and Improved Crystallinity of $$ {\hbox{KY}}_{3} {\hbox{F}}_{10} :{\hbox{Ho}}^{3 + } $$KY3F10:Ho3+ Thin Films Grown at High Deposition Temperature Using Pulsed Laser Deposition Technique , 2018 .

[9]  M. Schellhorn,et al.  High-power diode-pumped Tm:YLF laser , 2008 .

[10]  M. Pimenta,et al.  Raman scattering investigations of KY3F10 , 1991 .

[11]  Cheng Zhang,et al.  Compact passive Q-switching of a diode-pumped Tm,Y:CaF2 laser near 2 μm , 2018, Optics & Laser Technology.

[12]  P. Caro,et al.  Crystal field parameters for Eu3+ in KY3F10. III. Radiative and nonradiative transition probabilities , 1978 .

[13]  Shengzhi Zhao,et al.  Efficient CW Dual-Wavelength and Passively $Q$ -Switched Tm:LuAG Lasers , 2015, IEEE Photonics Technology Letters.

[14]  Sylvain Girard,et al.  Energy-transfer processes in Yb:Tm-doped KY 3 F 10 , LiYF 4 , and BaY 2 F 8 single crystals for laser operation at 1.5 and 2.3 μm , 2000 .

[15]  Xavier Mateos,et al.  Tm:KLu(WO(4))(2) microchip laser Q-switched by a graphene-based saturable absorber. , 2015, Optics express.

[16]  Patrick Georges,et al.  On thermal effects in solid state lasers: the case of ytterbium-doped materials , 2006 .

[17]  Shengzhi Zhao,et al.  A diode-pumped passively Q-switched Tm,Ho:YAP laser with a single-walled carbon nanotube , 2013 .

[18]  Y. Wang,et al.  Passive Q-switching of microchip lasers based on Ho:YAG ceramics. , 2016, Applied optics.

[19]  Zhen Zhang,et al.  High-efficiency 2  μm continuous-wave laser in laser diode-pumped Tm3+, La3+: CaF2 single crystal. , 2018, Optics letters.

[20]  Patrick Georges,et al.  Thermo-optic characterization of Yb:CaGdAlO 4 laser crystal , 2014 .

[21]  S. Girard,et al.  Synthesis and spectroscopic studies of Tm3+-doped KY3F10 single crystals , 2000 .

[22]  Yu Yang,et al.  Effects of Sr2+ content on microstructure and spectroscopic properties of Nd3+ doped Ca1-xSrxF2 transparent ceramics , 2019, Journal of Alloys and Compounds.

[23]  A. Kaminskiĭ,et al.  Laser Crystals: Their Physics and Properties , 1990 .

[24]  M. Tonelli,et al.  Widely tunable, efficient 2 μm laser in monocrystalline Tm3+:SrF2. , 2018, Optics Express.

[25]  F. Dejene,et al.  Pulsed laser deposited K Y 3 F 10 :H o 3+ thin films: Influence of target to substrate distance , 2017 .

[26]  Konstantin V. Yumashev,et al.  Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb , 2011 .

[27]  U. Griebner,et al.  Monoclinic Tm:MgWO4 crystal: Crystal-field analysis, tunable and vibronic laser demonstration , 2018, Journal of Alloys and Compounds.

[28]  Xavier Mateos,et al.  Comparative spectroscopic and thermo-optic study of Tm:LiLnF_4 (Ln = Y, Gd, and Lu) crystals for highly-efficient microchip lasers at 2 μm , 2017 .

[29]  Patrice Camy,et al.  Tm3+:CaF2 for 1.9 μm laser operation , 2004 .

[30]  V. Sammelselg,et al.  Comparison of concentration dependence of relative fluorescence quantum yield and brightness in first biological window of wavelengths for aqueous colloidal solutions of Nd3+: LaF3 and Nd3+: KY3F10 nanocrystals synthesized by microwave-hydrothermal treatment , 2018, Journal of Alloys and Compounds.

[31]  Lloyd L. Chase,et al.  Infrared cross-section measurements for crystals doped with Er/sup 3+/, Tm/sup 3+/, and Ho/sup 3+/ , 1992 .

[32]  P. Laporta,et al.  Widely tunable continuous-wave diode-pumped 2-µm Tm-Ho:KYF4 laser , 2004 .

[33]  Markus Pollnau,et al.  Stochastic Model of Energy-Transfer Processes Among Rare-Earth Ions. Example of Al2O3:Tm3+ , 2016 .

[34]  R. Moncorgé,et al.  Spectroscopy and cw operation of a 1.85 μm Tm:KY3F10 laser , 2001 .

[35]  A. Benayad,et al.  Liquid Phase Epitaxy growth of Tm3+-doped CaF2 thin-films based on LiF solvent , 2019, Journal of Alloys and Compounds.

[36]  M. Tonelli,et al.  LiGdF4:Tm3+: spectroscopy and diode-pumped laser experiments , 2009 .

[37]  Steven B. Sutton,et al.  115-W Tm:YAG diode-pumped solid-state laser , 1997 .

[38]  B. Aull,et al.  Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections , 1982 .

[39]  Xavier Mateos,et al.  Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes , 2016 .

[40]  U. Weichmann,et al.  Diode-pumped Pr(3+):KY(3)F(10) red laser. , 2007, Optics letters.

[41]  H. Jenssen,et al.  Spectroscopy and laser test emission in Tm3+ : BaYLuF8 single crystal , 2014 .

[42]  Günter Steinmeyer,et al.  Boosting the Non Linear Optical Response of Carbon Nanotube Saturable Absorbers for Broadband Mode‐Locking of Bulk Lasers , 2010 .

[43]  Jun Xu,et al.  Performance of 2 μm Tm:YAP pulse laser based on a carbon nanotube absorber , 2012 .

[44]  Ronghua Jian,et al.  Up-conversion luminescence and photo-thermal effect of KY3F10:Yb3+,Ho3+ nanocrystals , 2018, Journal of Physics D: Applied Physics.

[45]  H. Emerich,et al.  Study of the temperature dependence of the structure of KY3F10 , 2006 .

[46]  M. Tonelli,et al.  In-band pumped Ho3+:KY3Fi10 2 μm Laser , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[47]  X. Mateos,et al.  Judd–Ofelt modeling, stimulated-emission cross-sections and non-radiative relaxation in Er3+:K2YF5 crystals , 2016 .

[48]  Xiaodong Xu,et al.  First laser oscillation of diode-pumped Tm3+-doped LuScO3 mixed sesquioxide ceramic. , 2017, Optics express.

[49]  Zhongmin Su,et al.  Up-conversion photoluminescence properties and energy transfer process of Ho3+,Yb3+ Co-doped BaY2F8 fine fibers , 2019, Journal of Luminescence.

[50]  Norman P. Barnes,et al.  Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4 , 1998 .

[51]  R. Stoneman,et al.  Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers. , 1990, Optics letters.

[52]  I. Ranieri,et al.  Evidence for a core–shell configuration in Tb-doped KY3F10 nanoparticles using synchrotron x-ray line profile and pair distribution function analyses , 2018 .

[53]  Lloyd L. Chase,et al.  Quantum electronic properties of the Na/sub 3/Ga/sub 2/Li/sub 3/F/sub 12/:Cr/sup 3+/ laser , 1988 .