Hierarchical nanomorphologies promote exciton dissociation in polymer/fullerene bulk heterojunction solar cells.

PTB7 semiconducting copolymer comprising thieno[3,4-b]thiophene and benzodithiophene alternating repeat units set a historic record of solar energy conversion efficiency (7.4%) in polymer/fullerene bulk heterojunction solar cells. To further improve solar cell performance, a thorough understanding of structure-property relationships associated with PTB7/fullerene and related organic photovoltaic (OPV) devices is crucial. Traditionally, OPV active layers are viewed as an interpenetrating network of pure polymers and fullerenes with discrete interfaces. Here we show that the active layer of PTB7/fullerene OPV devices in fact involves hierarchical nanomorphologies ranging from several nanometers of crystallites to tens of nanometers of nanocrystallite aggregates in PTB7-rich and fullerene-rich domains, themselves hundreds of nanometers in size. These hierarchical nanomorphologies are coupled to significantly enhanced exciton dissociation, which consequently contribute to photocurrent, indicating that the nanostructural characteristics at multiple length scales is one of the key factors determining the performance of PTB7 copolymer, and likely most polymer/fullerene systems, in OPV devices.

[1]  C. McNeill,et al.  Nanoscale quantitative chemical mapping of conjugated polymer blends. , 2006, Nano letters.

[2]  Vladimir Dyakonov,et al.  Polymer–fullerene bulk heterojunction solar cells , 2010, 1003.0359.

[3]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[4]  Wei You,et al.  Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. , 2011, Journal of the American Chemical Society.

[5]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[6]  Vishal Shrotriya,et al.  Organic photovoltaics: Polymer power , 2009 .

[7]  J. Lüning,et al.  Nanomorphology of bulk heterojunction photovoltaic thin films probed with resonant soft X-ray scattering. , 2010, Nano letters.

[8]  Klaus Meerholz,et al.  Controlling Morphology in Polymer–Fullerene Mixtures , 2008 .

[9]  Detlef-M Smilgies,et al.  Scherrer grain-size analysis adapted to grazing-incidence scattering with area detectors. , 2009, Journal of applied crystallography.

[10]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[11]  A. Hexemer,et al.  Resonant Soft X-ray Scattering of Polymers with a 2D Detector: Initial Results and System Developments at the Advanced Light Source , 2010 .

[12]  Luping Yu,et al.  When Function Follows Form: Effects of Donor Copolymer Side Chains on Film Morphology and BHJ Solar Cell Performance , 2010, Advanced materials.

[13]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[14]  I. Samuel,et al.  Exciton Diffusion Measurements in Poly(3‐hexylthiophene) , 2008 .

[15]  D. Sentenac,et al.  On the instrumental resolution in X-ray reflectivity experiments , 2000 .

[16]  Thomas Strobel,et al.  Role of polaron pair diffusion and surface losses in organic semiconductor devices. , 2010, Physical review letters.

[17]  Shinuk Cho,et al.  Effect of processing additive on the nanomorphology of a bulk heterojunction material. , 2010, Nano letters.

[18]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[19]  Gang Li,et al.  Synthesis of fluorinated polythienothiophene-co-benzodithiophenes and effect of fluorination on the photovoltaic properties. , 2011, Journal of the American Chemical Society.

[20]  M. Toney,et al.  Tuning the properties of polymer bulk heterojunction solar cells by adjusting fullerene size to control intercalation. , 2009, Nano letters.

[21]  Craig J. Hawker,et al.  Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend , 2011 .

[22]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[23]  Zhenan Bao,et al.  Effects of Thermal Annealing Upon the Morphology of Polymer–Fullerene Blends , 2010 .

[24]  J. Manca,et al.  Varying polymer crystallinity in nanofiber poly(3-alkylthiophene): PCBM solar cells: Influence on charge-transfer state energy and open-circuit voltage , 2009 .

[25]  Ye Tao,et al.  Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2',3'-d]silole copolymer with a power conversion efficiency of 7.3%. , 2011, Journal of the American Chemical Society.

[26]  Gang Li,et al.  Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cells , 2008 .

[27]  D. I. Svergun,et al.  Structure Analysis by Small-Angle X-Ray and Neutron Scattering , 1987 .

[28]  G. Mitchell,et al.  The utility of resonant soft x-ray scattering and reflectivity for the nanoscale characterization of polymers , 2009 .

[29]  Dennis Nordlund,et al.  P3HT/PCBM bulk heterojunction organic photovoltaics: correlating efficiency and morphology. , 2011, Nano letters.

[30]  Thomas Strobel,et al.  Role of the Charge Transfer State in Organic Donor–Acceptor Solar Cells , 2010, Advanced materials.

[31]  Luping Yu,et al.  Structure, dynamics, and power conversion efficiency correlations in a new low bandgap polymer: PCBM solar cell. , 2010, The journal of physical chemistry. B.

[32]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[33]  C. McNeill,et al.  Influence of Annealing and Interfacial Roughness on the Performance of Bilayer Donor/Acceptor Polymer Photovoltaic Devices , 2010 .

[34]  F. Liu,et al.  Bulk heterojunction photovoltaic active layers via bilayer interdiffusion. , 2011, Nano letters.

[35]  Vladimir Dyakonov,et al.  Organic Bulk-Heterojunction Solar Cells , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[36]  C. Deibel,et al.  Photocurrent in bulk heterojunction solar cells , 2010, 1001.2546.

[37]  R. Gysel,et al.  Effects of Intercalation on the Hole Mobility of Amorphous Semiconducting Polymer Blends , 2010 .

[38]  Luping Yu,et al.  A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. , 2010, Accounts of chemical research.

[39]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[40]  David G Lidzey,et al.  Depletion of PCBM at the Cathode Interface in P3HT/PCBM Thin Films as Quantified via Neutron Reflectivity Measurements , 2010, Advanced materials.

[41]  Ximin He,et al.  Controlling nanoscale morphology in polymer photovoltaic devices , 2010 .

[42]  Tracey M. Clarke,et al.  Charge photogeneration in organic solar cells. , 2010, Chemical reviews.

[43]  M. Mackay,et al.  Nanoparticle concentration profile in polymer-based solar cells , 2010 .

[44]  T. Russell,et al.  X-ray and neutron reflectivity for the investigation of polymers , 1990 .

[45]  V. Mihailetchi,et al.  Photocurrent generation in polymer-fullerene bulk heterojunctions. , 2004, Physical review letters.

[46]  Guillermo C. Bazan,et al.  Improved Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase Separation via Solvent Additives , 2010, Advanced materials.

[47]  Jin Young Kim,et al.  Processing additives for improved efficiency from bulk heterojunction solar cells. , 2008, Journal of the American Chemical Society.

[48]  J. Kortright,et al.  Analysis of Order Formation in Block Copolymer Thin Films Using Resonant Soft X-Ray Scattering , 2006 .

[49]  B. Collins,et al.  Molecular Miscibility of Polymer-Fullerene Blends , 2010 .

[50]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[51]  H. Ohkita,et al.  Charge generation and recombination dynamics in poly(3-hexylthiophene)/fullerene blend films with different regioregularities and morphologies. , 2010, Journal of the American Chemical Society.