Treewidth of the Kneser Graph and the Erdős-Ko-Rado Theorem
暂无分享,去创建一个
[1] Alex D. Scott,et al. Hypergraphs of Bounded Disjointness , 2014, SIAM J. Discret. Math..
[2] Gyula O. H. Katona. A simple proof of the Erd?s-Chao Ko-Rado theorem , 1972 .
[3] E. Scheinerman,et al. Fractional Graph Theory: A Rational Approach to the Theory of Graphs , 1997 .
[4] László Pyber,et al. A new generalization of the Erdös-Ko-Rado theorem , 1986, J. Comb. Theory A.
[5] Günter M. Ziegler,et al. Generalized Kneser coloring theorems with combinatorial proofs , 2002 .
[6] Hans L. Bodlaender,et al. A Tourist Guide through Treewidth , 1993, Acta Cybern..
[7] G. Katona. A theorem of finite sets , 2009 .
[8] R. Halin. S-functions for graphs , 1976 .
[9] Dömötör Pálvölgyi,et al. Almost Cross-Intersecting and Almost Cross-Sperner Pairs of Families of Sets , 2013, Graphs Comb..
[10] Peter Frankl,et al. A new short proof for the Kruskal-Katona theorem , 1984, Discret. Math..
[11] Dániel Gerbner,et al. Almost Intersecting Families of Sets , 2012, SIAM J. Discret. Math..
[12] László Lovász,et al. Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.
[13] Richard M. Wilson,et al. The exact bound in the Erdös-Ko-Rado theorem , 1984, Comb..
[14] Paul D. Seymour,et al. Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.
[15] P. Erdös,et al. INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .