A new minimization protocol for solving nonlinear Poisson–Boltzmann mortar finite element equation

The nonlinear Poisson–Boltzmann equation (PBE) is a widely-used implicit solvent model in biomolecular simulations. This paper formulates a new PBE nonlinear algebraic system from a mortar finite element approximation, and proposes a new minimization protocol to solve it efficiently. In particular, the PBE mortar nonlinear algebraic system is proved to have a unique solution, and is equivalent to a unconstrained minimization problem. It is then solved as the unconstrained minimization problem by the subspace trust region Newton method. Numerical results show that the new minimization protocol is more efficient than the traditional merit least squares approach in solving the nonlinear system. At least 80 percent of the total CPU time was saved for a PBE model problem.

[1]  Barbara I. Wohlmuth,et al.  Mortar Finite Elements for Interface Problems , 2004, Computing.

[2]  S A Benner,et al.  Protein Structure Prediction , 1996, Science.

[3]  Charles Tanford,et al.  Physical Chemistry of Macromolecules , 1961 .

[4]  Michael J. Holst,et al.  Adaptive multilevel finite element solution of the Poisson–Boltzmann equation I. Algorithms and examples , 2001 .

[5]  Jacques-Louis Lions,et al.  Nonlinear partial differential equations and their applications , 1998 .

[6]  PROBLEMSBISHNU P. LAMICHHANE,et al.  MORTAR FINITE ELEMENTS FOR INTERFACE , 2007 .

[7]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[8]  Michael J. Holst,et al.  The adaptive multilevel finite element solution of the Poisson-Boltzmann equation on massively parallel computers , 2001, IBM J. Res. Dev..

[9]  Nathan A. Baker,et al.  Improving implicit solvent simulations: a Poisson-centric view. , 2005, Current opinion in structural biology.

[10]  Thomas F. Coleman,et al.  A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems , 1999, SIAM J. Sci. Comput..

[11]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[12]  L. R. Scott,et al.  Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian dynamics program , 1995 .

[13]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[14]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[15]  Wenbin Chen,et al.  A mortar finite element approximation for the linear Poisson-Boltzmann equation , 2005, Appl. Math. Comput..

[16]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[17]  Nathan A. Baker,et al.  Jason Wagoner and Nathan A. Baker, "Solvation forces on biomolecular structures: A comparison of explicit solvent and Poisson‐Boltzmann models,"Journal of Computational Chemistry(2004) 25(13) 1623–1629 , 2004 .

[18]  Barbara I. Wohlmuth A V-cycle Multigrid Approach for Mortar Finite Elements , 2005, SIAM J. Numer. Anal..

[19]  Homer F. Walker,et al.  Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..

[20]  Thomas F. Coleman,et al.  On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds , 1994, Math. Program..

[21]  P. Mikusinski,et al.  Introduction to Hilbert spaces with applications , 1990 .

[22]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[23]  Richard H. Byrd,et al.  Approximate solution of the trust region problem by minimization over two-dimensional subspaces , 1988, Math. Program..

[24]  Barry Honig,et al.  Extending the Applicability of the Nonlinear Poisson−Boltzmann Equation: Multiple Dielectric Constants and Multivalent Ions† , 2001 .

[25]  Harold A. Scheraga,et al.  A fast adaptive multigrid boundary element method for macromolecular electrostatic computations in a solvent , 1997, J. Comput. Chem..

[26]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  B. Roux,et al.  Implicit solvent models. , 1999, Biophysical chemistry.

[28]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[29]  Olof B. Widlund,et al.  Iterative Substructuring Preconditioners For Mortar Element Methods In Two Dimensions , 1997 .

[30]  Michael J. Holst,et al.  A New Paradigm for Parallel Adaptive Meshing Algorithms , 2000, SIAM J. Sci. Comput..

[31]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[32]  Douglas A. Lauffenburger,et al.  NUMERICAL SOLUTION OF THE NONLINEAR POISSON-BOLTZMANN EQUATION FOR A MEMBRANE-ELECTROLYTE SYSTEM , 1994 .

[33]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[34]  Gene H. Golub,et al.  Matrix computations , 1983 .

[35]  Michael J. Holst,et al.  Numerical solution of the nonlinear Poisson–Boltzmann equation: Developing more robust and efficient methods , 1995, J. Comput. Chem..

[36]  Shen Yifan,et al.  A mortar finite element approximation for the linear Poisson-Boltzmann equation , 2005 .

[37]  T. Coleman,et al.  On the Convergence of Reflective Newton Methods for Large-scale Nonlinear Minimization Subject to Bounds , 1992 .