PID tuning rules for minimum-time rest-to-rest transitions

Abstract In this paper we propose new tuning rules for PID controllers so that the determined feedback controller can be employed with a properly designed feedforward command input in order to achieve a minimum-time transition from an equilibrium state to another (corresponding to a new desired process variable value) subject to constraints on the control and process variables. Simulation results demonstrate the effectiveness of the combined feedforward/feedback design methodology.

[1]  Luca Consolini,et al.  Generalized bang-bang control for feedforward constrained regulation , 2006, CDC.

[2]  Aidan O'Dwyer,et al.  Handbook of PI and PID controller tuning rules , 2003 .

[3]  R. V. Dooren,et al.  A Chebyshev technique for solving nonlinear optimal control problems , 1988 .

[4]  Gamal N. Elnagar,et al.  Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dynamical Systems , 1998, Comput. Optim. Appl..

[5]  M. Araki,et al.  Two-Degree-of-Freedom PID Controllers , 2003 .

[6]  Luca Bascetta,et al.  FIR based causal design of 2-d.o.f. controllers for optimal set point tracking , 2008 .

[7]  Aurelio Piazzi,et al.  A noncausal approach for PID Control , 2006 .

[8]  Wang,et al.  Auto-tuning of TITO decoupling controllers from step tests , 2000, ISA transactions.

[9]  Gamal N. Elnagar State-control spectral Chebyshev parameterization for linearly constrained quadratic optimal control problems , 1997 .

[10]  Anders Wallén,et al.  Tools for Autonomous Process Control , 2000 .

[11]  Tore Hägglund,et al.  Advanced PID Control , 2005 .

[12]  Chang-Chieh Hang,et al.  Improvement of transient response by means of variable set point weighting , 1996, IEEE Trans. Ind. Electron..

[13]  Luca Consolini,et al.  Minimum-time feedforward control for industrial processes , 2007, 2007 European Control Conference (ECC).

[14]  Luca Bascetta,et al.  Designing the feedforward part of 2-d.o.f. industrial controllers for optimal tracking , 2007 .

[15]  Thomas F. Coleman,et al.  Optimization Toolbox User's Guide , 1998 .

[16]  M. S. Salim,et al.  A Chebyshev approximation for solving optimal control problems , 1995 .

[17]  António E. Ruano,et al.  Hands-on PID autotuning: a guide to better utilisation , 2002 .

[18]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[19]  Benjamin C. Kuo,et al.  AUTOMATIC CONTROL SYSTEMS , 1962, Universum:Technical sciences.

[20]  Karl Johan Åström,et al.  PULSE-STEP CONTROL , 2002 .

[21]  Hussein Jaddu,et al.  Computation of optimal control trajectories using chebyshev polynomials : Parameterization, and quadratic programming , 1999 .

[22]  Antonio Visioli,et al.  Minimum-time feedforward technique for PID control , 2009 .

[23]  Antonio Visioli,et al.  Practical PID Control , 2006 .

[24]  Antonio Visioli,et al.  Fuzzy logic based set-point weight tuning of PID controllers , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[25]  Antonio Visioli A new design for a PID plus feedforward controller , 2004 .

[26]  Paola Gervasio,et al.  On the practical implementation of feedforward control signals given in polynomial form , 2009, 2009 IEEE Conference on Emerging Technologies & Factory Automation.