Using the CONDENSATION algorithm for robust, vision-based mobile robot localization
暂无分享,去创建一个
Wolfram Burgard | Frank Dellaert | Sebastian Thrun | Dieter Fox | D. Fox | S. Thrun | W. Burgard | F. Dellaert | Wolfram Burgard
[1] R. S. Bucy,et al. Bayes Theorem and Digital Realizations for Non-Linear Filters , 1969 .
[2] J. E. Handschin. Monte Carlo techniques for prediction and filtering of non-linear stochastic processes , 1970 .
[3] D. Rubin. Using the SIR algorithm to simulate posterior distributions , 1988 .
[4] Maja J. Matarić,et al. A Distributed Model for Mobile Robot Environment-Learning and Navigation , 1990 .
[5] Carl F. R. Weiman,et al. Helpmate autonomous mobile robot nav-igation system , 1991 .
[6] Ingemar J. Cox,et al. Blanche-an experiment in guidance and navigation of an autonomous robot vehicle , 1991, IEEE Trans. Robotics Autom..
[7] John J. Leonard,et al. Directed Sonar Sensing for Mobile Robot Navigation , 1992 .
[8] Alan E. Gelfand,et al. Bayesian statistics without tears: A sampling-resampling perspective , 1992 .
[9] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[10] David Kortenkamp,et al. Topological Mapping for Mobile Robots Using a Combination of Sonar and Vision Sensing , 1994, AAAI.
[11] Bernt Schiele,et al. A comparison of position estimation techniques using occupancy grids , 1994, Robotics Auton. Syst..
[12] Hobart R. Everett,et al. Real-world issues in warehouse navigation , 1995, Other Conferences.
[13] Reid G. Simmons,et al. Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.
[14] Illah R. Nourbakhsh,et al. DERVISH - An Office-Navigating Robot , 1995, AI Mag..
[15] G. Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .
[16] Wolfram Burgard,et al. Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids , 1996, AAAI/IAAI, Vol. 2.
[17] Liqiang Feng,et al. Navigating Mobile Robots: Systems and Techniques , 1996 .
[18] Michael Isard,et al. Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.
[19] Leslie Pack Kaelbling,et al. Acting under uncertainty: discrete Bayesian models for mobile-robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.
[20] J.-S. Gutmann,et al. AMOS: comparison of scan matching approaches for self-localization in indoor environments , 1996, Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96).
[21] Evangelos E. Milios,et al. Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.
[22] Gregory D. Hager,et al. Image-based prediction of landmark features for mobile robot navigation , 1997, Proceedings of International Conference on Robotics and Automation.
[23] Simon J. Godsill,et al. On sequential simulation-based methods for Bayesian filtering , 1998 .
[24] Wolfram Burgard,et al. Position Estimation for Mobile Robots in Dynamic Environments , 1998, AAAI/IAAI.
[25] Wolfram Burgard,et al. Active Markov localization for mobile robots , 1998, Robotics Auton. Syst..
[26] Wolfram Burgard,et al. Integrating global position estimation and position tracking for mobile robots: the dynamic Markov localization approach , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).
[27] M. Pitt,et al. Filtering via Simulation: Auxiliary Particle Filters , 1999 .
[28] S. Thrun,et al. Mosaicing a Large Number of Widely Dispersed, Noisy, and Distorted Images: A Bayesian Approach , 1999 .
[29] P. Fearnhead,et al. An improved particle filter for non-linear problems , 1999 .