A multiscale model of plasticity

Abstract A framework for investigating size-dependent small-scale plasticity phenomena and related material instabilities at various length scales ranging from the nano-microscale to the mesoscale is presented. The model is based on fundamental physical laws that govern dislocation motion and their interaction with various defects and interfaces. Particularly, the multi-scale framework merges two scales, the nano-microscale where plasticity is determined by explicit three-dimensional dislocation dynamics analysis providing the material length-scale, and the continuum scale where energy transport is based on basic continuum mechanics laws. The result is a hybrid elasto-viscoplastic simulation model coupling discrete dislocation dynamics with finite element analyses. With this hybrid approach, one can address complex size-dependent problems including, dislocation boundaries, dislocations in heterogeneous structures, dislocation interaction with interfaces and associated shape changes and lattice rotations, as well as deformation in nano-structured materials, localized deformation and shear bands.

[1]  H. Stumpf,et al.  A MODEL OF ELASTOPLASTIC BODIES WITH CONTINUOUSLY DISTRIBUTED DISLOCATIONS , 1996 .

[2]  H. Zbib,et al.  Internal structures of deformation induced planar dislocation boundaries , 2001 .

[3]  G. Pawley,et al.  Role of the secondary slip system in a computer simulation model of the plastic behaviour of single crystals , 1993 .

[4]  L. P. Kubin,et al.  The Dynamic Organization of Dislocation Structures , 1989 .

[5]  Marc Fivel,et al.  Three-dimensional modeling of indent-induced plastic zone at a mesoscale , 1998 .

[6]  J. Weertman,et al.  Dislocation mobility in potassium and iron single crystals , 1975 .

[7]  Moe Khaleel,et al.  Size and boundary effects in discrete dislocation dynamics: coupling with continuum finite element , 2001 .

[8]  Moono Rhee,et al.  3-D SIMULATION OF CURVED DISLOCATIONS: DISCRETIZATION AND LONG RANGE INTERACTIONS , 1996 .

[9]  Hussein M. Zbib,et al.  Models for long-/short-range interactions and cross slip in 3D dislocation simulation of BCC single crystals , 1998 .

[10]  Hussein M. Zbib,et al.  On plastic deformation and the dynamics of 3D dislocations , 1998 .

[11]  Hussein M. Zbib,et al.  Dynamic shear banding: A three-dimensional analysis , 1992 .

[12]  Alexander M. Puzrin,et al.  A thermomechanical framework for constitutive models for rate-independent dissipative materials , 2000 .

[13]  Y. Bréchet,et al.  3D Simulation of Dislocation Motion on a Lattice: Application to the Yield Surface of Single Crystals , 1993 .

[14]  U. Essmann Elektronenmikroskopische untersuchung der versetzungsanordnung in plastisch verformten kupfereinkristallen , 1964 .

[15]  Elias C. Aifantis,et al.  The physics of plastic deformation , 1987 .

[16]  J. Hirth,et al.  Dislocation injection in strained multilayer structures , 1990 .

[17]  John Lambros,et al.  Development of a dynamic decohesion criterion for subsonic fracture of the interface between two dissimilar materials , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[18]  David L. McDowell,et al.  A nonlinear kinematic hardening theory for cyclic thermoplasticity and thermoviscoplasticity , 1992 .

[19]  H. Zbib,et al.  Multiscale modelling of plastic flow localization in irradiated materials , 2000, Nature.

[20]  Nasr M. Ghoniem,et al.  Fast-sum method for the elastic field of three-dimensional dislocation ensembles , 1999 .

[21]  Elias C. Aifantis,et al.  Pattern formation in plasticity , 1995 .

[22]  Y. Estrin,et al.  Dislocation Patterns and Plastic Instabilities , 1990 .

[23]  Surya R. Kalidindi,et al.  Modeling anisotropic strain hardening and deformation textures in low stacking fault energy fcc metals , 2001 .

[24]  Richard Alan Lesar,et al.  O(N) algorithm for dislocation dynamics , 1995 .

[25]  Elias C. Aifantis On the Problem of Dislocation Patterning and Persistent Slip Bands , 1988 .

[26]  Discrete Dislocation Plasticity , 2003 .

[27]  Hussein M. Zbib,et al.  A mesoscopic model for inelastic deformation and damage , 2001 .

[28]  Louay N. Mohammad,et al.  Theory vs. experiment for finite strain viscoplastic, lagrangian constitutive model☆ , 1991 .

[29]  Akhtar S. Khan,et al.  Study of three elastic-plastic constitutive models by non-proportional finite deformations of OFHC copper , 1996 .

[30]  T. Wright,et al.  A continuum framework for finite viscoplasticity , 2001 .

[31]  H. Zbib,et al.  A thermodynamical theory of gradient elastoplasticity with dislocation density tensor. I: Fundamentals , 1999 .

[32]  Kazutoshi Tanabe,et al.  Computer-aided materials design. , 1993 .

[33]  H. Zbib,et al.  On the bowed out tilt wall model of flow stress and size effects in metal matrix composites , 1994 .

[34]  van der Erik Giessen,et al.  Discrete dislocation plasticity: a simple planar model , 1995 .

[35]  H. Mughrabi,et al.  Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities , 1979 .

[36]  J. Lépinoux,et al.  The dynamic organization of dislocation structures: A simulation , 1987 .

[37]  K. Malén,et al.  Some Unifying Relations for Moving Dislocations , 1968, April 1.

[38]  H. Zbib,et al.  The displacement, and strain–stress fields of a general circular Volterra dislocation loop , 2000 .

[39]  Hussein M. Zbib,et al.  Modeling of deformation by a 3D simulation of multiple, curved dislocations , 1996 .

[40]  H. Zbib,et al.  Forces on high velocity dislocations , 1998 .

[41]  D. L. Holt,et al.  Dislocation Cell Formation in Metals , 1970 .

[42]  D. Walgraef,et al.  Anisotropy effects on pattern selection near dynamical instabilities , 1987 .

[43]  A. Needleman Computational mechanics at the mesoscale , 2000 .

[44]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[45]  H. Zbib,et al.  The treatment of traction-free boundary condition in three-dimensional dislocation dynamics using generalized image stress analysis , 2001 .

[46]  L. Kubin Dislocation patterning during multiple slip of F.C.C. crystals : a simulation approach , 1993 .

[47]  J. Kratochvíl,et al.  On the sweeping of dipolar loops by gliding dislocations , 1997 .

[48]  R. Scattergood,et al.  The Orowan mechanism in anisotropic crystals , 1975 .

[49]  V. Bulatov,et al.  Periodic Boundary Conditions for Dislocation Dynamics Simulations in Three Dimensions , 2000 .

[50]  B. Wirth,et al.  Plastic flow localization in irradiated materials: A multiscale modeling approach , 2000 .

[51]  Akhtar S. Khan,et al.  Behaviors of three BCC metals during non-proportional multi-axial loadings: experiments and modeling , 2000 .

[52]  David M. Barnett,et al.  The self-force on a planar dislocation loop in an anisotropic linear-elastic medium , 1976 .

[53]  D. Kuhlmann-wilsdorf Questions you always wanted (or should have wanted) to ask about workhardening , 1998 .

[54]  W. Zieliński,et al.  Dislocation distribution under a microindentation into an iron-silicon single crystal , 1995 .

[55]  Nasr M. Ghoniem,et al.  Computer Simulaltion of Dislocation Pattern Formation , 1991 .