Quadratic functions with prescribed spectra

We study a class of quadratic p-ary functions $${{\mathcal{F}}_{p,n}}$$ from $${\mathbb{F}_{p^n}}$$ to $${\mathbb{F}_p, p \geq 2}$$, which are well-known to have plateaued Walsh spectrum; i.e., for each $${b \in \mathbb{F}_{p^n}}$$ the Walsh transform $${\hat{f}(b)}$$ satisfies $${|\hat{f}(b)|^2 \in \{ 0, p^{(n+s)}\}}$$ for some integer 0 ≤ s ≤ n − 1. For various types of integers n, we determine possible values of s, construct $${{\mathcal{F}}_{p,n}}$$ with prescribed spectrum, and present enumeration results. Our work generalizes some of the earlier results, in characteristic two, of Khoo et. al. (Des Codes Cryptogr, 38, 279–295, 2006) and Charpin et al. (IEEE Trans Inf Theory 51, 4286–4298, 2005) on semi-bent functions, and of Fitzgerald (Finite Fields Appl 15, 69–81, 2009) on quadratic forms.

[1]  Rudolf Lide,et al.  Finite fields , 1983 .

[2]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[3]  Guozhen Xiao,et al.  Fast Algorithms for Determining the Linear Complexity of Period Sequences , 2002, INDOCRYPT.

[4]  Robert W. Fitzgerald,et al.  Trace forms over finite fields of characteristic 2 with prescribed invariants , 2009, Finite Fields Their Appl..

[5]  Alfred Menezes,et al.  Progress in Cryptology — INDOCRYPT 2002 , 2002, Lecture Notes in Computer Science.

[6]  Gregor Leander,et al.  Construction of bent functions from near-bent functions , 2009, J. Comb. Theory, Ser. A.

[7]  C. Ding,et al.  Stream Ciphers and Number Theory , 1998 .

[8]  Guozhen Xiao,et al.  A Fast Algorithm for Determining the Linear Complexity of a Sequence with Period Over GF , 2000 .

[9]  G. Gong,et al.  A new family of Gold-like sequences , 2002, Proceedings IEEE International Symposium on Information Theory,.

[10]  Sihem Mesnager,et al.  A Note on Semi-bent Boolean Functions , 2010, IACR Cryptol. ePrint Arch..

[11]  Robert W. Fitzgerald,et al.  Highly degenerate quadratic forms over finite fields of characteristic 2 , 2005, Finite Fields Their Appl..

[12]  Richard A. Games,et al.  A fast algorithm for determining the complexity of a binary sequence with period 2n , 1983, IEEE Trans. Inf. Theory.

[13]  Wilfried Meidl,et al.  Reducing the calculation of the linear complexity of u2v-periodic binary sequences to Games–Chan algorithm , 2008, Des. Codes Cryptogr..

[14]  Guang Gong,et al.  A New Characterization of Semi-bent and Bent Functions on Finite Fields* , 2006, Des. Codes Cryptogr..

[15]  D. Jungnickel Finite fields : structure and arithmetics , 1993 .

[16]  Harald Niederreiter,et al.  On the expected value of the linear complexity and the k-error linear complexity ofperiodic sequences , 2002, IEEE Trans. Inf. Theory.

[17]  Cunsheng Ding,et al.  The Stability Theory of Stream Ciphers , 1991, Lecture Notes in Computer Science.

[18]  Pascale Charpin,et al.  On bent and semi-bent quadratic Boolean functions , 2005, IEEE Transactions on Information Theory.

[19]  Wilfried Meidl,et al.  A construction of weakly and non-weakly regular bent functions , 2010, J. Comb. Theory, Ser. A.

[20]  Henning Stichtenoth,et al.  Factorization of a class of polynomials over finite fields , 2012, Finite Fields Their Appl..

[21]  Wilfried Meidl,et al.  Bent Functions of Maximal Degree , 2012, IEEE Transactions on Information Theory.

[22]  Hao Chen,et al.  Fast algorithms for determining the linear complexity of sequences over GF(p/sup m/) with period 2/sup t/n , 2005, IEEE Transactions on Information Theory.

[23]  Helmut Meyn,et al.  On the construction of irreducible self-reciprocal polynomials over finite fields , 1990, Applicable Algebra in Engineering, Communication and Computing.