Coordinate-based versus structural approaches to brain image analysis

A basic issue in neurosciences is to look for possible relationships between brain architecture and cognitive models. The lack of architectural information in magnetic resonance images, however, has led the neuroimaging community to develop brain mapping strategies based on various coordinate systems without accurate architectural content. Therefore, the relationships between architectural and functional brain organizations are difficult to study when analyzing neuroimaging experiments. This paper advocates that the design of new brain image analysis methods inspired by the structural strategies often used in computer vision may provide better ways to address these relationships. The key point underlying this new framework is the conversion of the raw images into structural representations before analysis. These representations are made up of data-driven elementary features like activated clusters, cortical folds or fiber bundles. Two classes of methods are introduced. Inference of structural models via matching across a set of individuals is described first. This inference problem is illustrated by the group analysis of functional statistical parametric maps (SPMs). Then, the matching of new individual data with a priori known structural models is described, using the recognition of the cortical sulci as a prototypical example.

[1]  E. G. Jones Cerebral Cortex , 1987, Cerebral Cortex.

[2]  Alan C. Evans,et al.  An MRI-based stereotactic atlas from 250 young normal subjects , 1992 .

[3]  D C Van Essen,et al.  Information processing in the primate visual system: an integrated systems perspective. , 1992, Science.

[4]  Jean-Francois Mangin,et al.  Multisubject Non-rigid Registration of Brain MRI Using Intensity and Geometric Features , 2001, MICCAI.

[5]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[6]  P. Fox,et al.  Mapping context and content: the BrainMap model , 2002, Nature Reviews Neuroscience.

[7]  K Amunts,et al.  Quantitative analysis of sulci in the human cerebral cortex: Development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture , 1997, Human brain mapping.

[8]  Isabelle Bloch,et al.  Gyral Parcellation of the Cortical Surface Using Geodesic Voronoï Diagrams , 2002, MICCAI.

[9]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[10]  D. V. van Essen,et al.  Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Alan C. Evans,et al.  Structural asymmetries in the human brain: a voxel-based statistical analysis of 142 MRI scans. , 2001, Cerebral cortex.

[12]  J. Bolton,et al.  Anatomie des menschlichen Gehirns und Ruckenmarks auf myelogenetischer Gründlage , 1921 .

[13]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Isabelle Bloch,et al.  A Mean Curvature Based Primal Sketch to Study the Cortical Folding Process from Antenatal to Adult Brain , 2001, MICCAI.

[15]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[16]  A. Schleicher,et al.  Two different areas within the primary motor cortex of man , 1996, Nature.

[17]  Frithjof Kruggel,et al.  Analyzing the Neocortical Fine-Structure , 2001, IPMI.

[18]  V. Wedeen,et al.  Fiber crossing in human brain depicted with diffusion tensor MR imaging. , 2000, Radiology.

[19]  Jerry L Prince,et al.  Automated Sulcal Segmentation Using Watersheds on the Cortical Surface , 2002, NeuroImage.

[20]  Isabelle Bloch,et al.  From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations , 1995, Journal of Mathematical Imaging and Vision.

[21]  P T Fox,et al.  Structure--function spatial covariance in the human visual cortex. , 2001, Cerebral cortex.

[22]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[23]  K Zilles,et al.  Coordinate-independent mapping of structural and functional data by objective relational transformation (ORT). , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[24]  Jean-Francois Mangin,et al.  Automatic recognition of cortical sulci of the human brain using a congregation of neural networks , 2002, Medical Image Anal..

[25]  Karl J. Friston,et al.  Combining Spatial Extent and Peak Intensity to Test for Activations in Functional Imaging , 1997, NeuroImage.

[26]  Karl J. Friston,et al.  A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains , 2001, NeuroImage.

[27]  Jelliffe Vergleichende Lokalisationslehre der Grosshirnrinde , 1910 .

[28]  D C Van Essen,et al.  A graphical anatomical database of neural connectivity. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[29]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[30]  Marina Chicurel,et al.  Databasing the brain , 2000, Nature.

[31]  Nicholas Ayache,et al.  Artificial vision for mobile robots - stereo vision and multisensory perception , 1991 .

[32]  Tony Lindeberg,et al.  Detecting salient blob-like image structures and their scales with a scale-space primal sketch: A method for focus-of-attention , 1993, International Journal of Computer Vision.

[33]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[34]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[35]  P. Roland,et al.  Comparison of spatial normalization procedures and their impact on functional maps , 2002, Human brain mapping.

[36]  Alan C. Evans,et al.  Structural maturation of neural pathways in children and adolescents: in vivo study. , 1999, Science.

[37]  P. Flechsig Anatomie des menschlichen Gehirns und Rückenmarks : auf myelogenetischer Grundlage , 1920 .

[38]  R. Kötter,et al.  Neuroscience databases: tools for exploring brain structure-function relationships. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[39]  M. Raichle,et al.  A Stereotactic Method of Anatomical Localization for Positron Emission Tomography , 1985, Journal of computer assisted tomography.

[40]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[41]  Isabelle Bloch,et al.  A MRF Based Random Graph Modelling the Human Cortical Topography , 1995, CVRMed.

[42]  Jon H. Kaas,et al.  The emergence and evolution of mammalian neocortex , 1995, Trends in Neurosciences.

[43]  Marko Wilke,et al.  Assessment of spatial normalization of whole‐brain magnetic resonance images in children , 2002, Human brain mapping.

[44]  T Lindeberg,et al.  Analysis of brain activation patterns using a 3‐D scale‐space primal sketch , 1999, Human brain mapping.

[45]  D. Le Bihan,et al.  Diffusion tensor imaging: Concepts and applications , 2001, Journal of magnetic resonance imaging : JMRI.

[46]  D. Louis Collins,et al.  Automatic 3‐D model‐based neuroanatomical segmentation , 1995 .

[47]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[48]  Edgar M. Housepian Atlas d'anatomie stereotaxique du telencephale. , 1968 .

[49]  Alan C. Evans,et al.  Automated 3-D Extraction of Inner and Outer Surfaces of Cerebral Cortex from MRI , 2000, NeuroImage.

[50]  M. Young,et al.  Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[51]  D. Louis Collins,et al.  Non-linear Cerebral Registration with Sulcal Constraints , 1998, MICCAI.

[52]  D. Louis Collins,et al.  Retrospective Evaluation of Inter-subject Brain Registration , 2001, MICCAI.

[53]  R. Woods,et al.  Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain , 2000, Human brain mapping.

[54]  Gabriele Lohmann,et al.  Automatic labelling of the human cortical surface using sulcal basins , 2000, Medical Image Anal..

[55]  Alan C. Evans,et al.  Anatomical mapping of functional activation in stereotactic coordinate space , 1992, NeuroImage.

[56]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[57]  J. -B. Poline,et al.  Structural Group Analysis of Functional Activation Maps , 2000, NeuroImage.

[58]  A. Dale,et al.  New images from human visual cortex , 1996, Trends in Neurosciences.

[59]  Prof. Dr. Heiko Braak,et al.  Architectonics of the Human Telencephalic Cortex , 1980, Studies of Brain Function.

[60]  Paul M. Thompson,et al.  A surface-based technique for warping three-dimensional images of the brain , 1996, IEEE Trans. Medical Imaging.

[61]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[62]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[63]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[64]  Klaas E. Stephan,et al.  The anatomical basis of functional localization in the cortex , 2002, Nature Reviews Neuroscience.

[65]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[66]  J L Lancaster,et al.  Automated Talairach Atlas labels for functional brain mapping , 2000, Human brain mapping.

[67]  Paul M. Thompson,et al.  Probabilistic approaches for atlasing normal and disease-specific brain variability , 2001, Anatomy and Embryology.

[68]  C. Poupon,et al.  Regularization of Diffusion-Based Direction Maps for the Tracking of Brain White Matter Fascicles , 2000, NeuroImage.

[69]  S. Zeki A vision of the brain , 1993 .

[70]  K. Zilles,et al.  Brain atlases - a new research tool , 1994, Trends in Neurosciences.

[71]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[72]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[73]  D. Le Bihan,et al.  A framework based on spin glass models for the inference of anatomical connectivity from diffusion‐weighted MR data – a technical review , 2002, NMR in biomedicine.

[74]  小野 道夫,et al.  Atlas of the Cerebral Sulci , 1990 .

[75]  I. Johnsrude,et al.  The problem of functional localization in the human brain , 2002, Nature Reviews Neuroscience.

[76]  A. Schleicher,et al.  Cytoarchitectural maps of the human brain in standard anatomical space , 1997, Human brain mapping.

[77]  S. Dehaene,et al.  Anatomical variability in the cortical representation of first and second language , 1997, Neuroreport.

[78]  J. Régis,et al.  Generic model for the localization of the cerebral cortex and preoperative multimodal integration in epilepsy surgery. , 1995, Stereotactic and functional neurosurgery.

[79]  Nicholas Ayache,et al.  A scheme for automatically building three-dimensional morphometric anatomical atlases: application to a skull atlas , 1998, Medical Image Anal..

[80]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[81]  W. Welker Why Does Cerebral Cortex Fissure and Fold , 1990 .