Typical coexistence of infinitely many strange attractors

We prove that the coexistence of infinitely many prevalent Hénon-like phenomena is Kolmogorov typical in sectional dissipative C-Berger domains of parameter families of diffeomorphisms of dimension m ≥ 3 for d < r − 1. In particular, we get the coexistence infinitely many non-hyperbolic strange attractors for 3 ≤ d < r − 1.

[1]  Eduardo Colli Infinitely many coexisting strange attractors , 1998 .

[2]  S. Newhouse,et al.  The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms , 1979 .

[3]  Pablo G. Barrientos,et al.  Berger domains and Kolmogorov typicality of infinitely many invariant circles , 2021, 2102.07962.

[4]  Lennart Carleson,et al.  The Dynamics of the Henon Map , 1991 .

[5]  J. A. Rodríguez,et al.  Coexistence and persistence of infinitely many strange attractors , 2001, Ergodic Theory and Dynamical Systems.

[6]  Marcelo Viana,et al.  Abundance of strange attractors , 1993 .

[7]  Floris Takens,et al.  Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations : fractal dimensions and infinitely many attractors , 1993 .

[8]  J. Palis,et al.  High dimension diffeomorphisms displaying infinitely many periodic attractors , 1994 .

[9]  J. A. Rodríguez,et al.  Coexistence and Persistence of Strange Attractors , 2002 .

[10]  Jacob Palis,et al.  A global view of dynamics and a conjecture on the denseness of finitude of attractors , 2018, Astérisque.

[11]  P. Berger Emergence and non-typicality of the finiteness of the attractors in many topologies , 2016, 1609.08803.

[12]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[13]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[14]  John B. Conway,et al.  A Course in Abstract Analysis , 2012 .

[15]  H. P. Annales de l'Institut Henri Poincaré , 1931, Nature.

[16]  M. Jakobson Absolutely continuous invariant measures for one-parameter families of one-dimensional maps , 1981 .

[17]  B. Leal High dimension diffeomorphisms exhibiting infinitely many strange attractors , 2008 .

[18]  Marcelo Viana,et al.  Strange attractors in higher dimensions , 1993 .

[19]  Pablo G. Barrientos,et al.  Robust Degenerate Unfoldings of Cycles and Tangencies , 2020 .

[20]  Clark Robinson,et al.  Bifurcation to infinitely many sinks , 1983 .

[21]  Pablo G. Barrientos,et al.  ROBUST CYCLES AND TANGENCIES OF LARGE CODIMENSION , 2015, 1509.05325.

[22]  P. Berger Generic family with robustly infinitely many sinks , 2014, 1411.6441.

[23]  N. Romero Persistence of homoclinic tangencies in higher dimensions , 1995, Ergodic Theory and Dynamical Systems.

[24]  L. Shilnikov,et al.  On dynamical properties of multidimensional diffeomorphisms from Newhouse regions: I , 2008 .