The variational attitude estimator in the presence of bias in angular velocity measurements
暂无分享,去创建一个
Carlos Silvestre | Paulo Jorge Ramalho Oliveira | Amit K. Sanyal | V. Sasi Prabhakaran | Maziar Izadi | V. S. Prabhakaran | C. Silvestre | P. Oliveira | A. Sanyal | Maziar Izadi
[1] L. Einkemmer. Structure preserving numerical methods for the Vlasov equation , 2016, 1604.02616.
[2] N. McClamroch,et al. Rigid-Body Attitude Control , 2011, IEEE Control Systems.
[3] A. Sanyal. USING ROTATION MATRICES FOR CONTINUOUS, SINGULARITY-FREE CONTROL LAWS , 2011 .
[4] A. Sanyal. Optimal Attitude Estimation and Filtering Without Using Local Coordinates Part I: Uncontrolled and Deterministic Attitude Dynamics , 2005, 2006 American Control Conference.
[5] Donald E. Kirk,et al. Optimal control theory : an introduction , 1970 .
[6] R. Mortensen. Maximum-likelihood recursive nonlinear filtering , 1968 .
[7] F. Landis Markley,et al. Attitude Filtering on SO(3) , 2006 .
[8] Mohammad Zamani,et al. Deterministic Attitude and Pose Filtering, an Embedded Lie Groups Approach , 2013 .
[9] João Pedro Hespanha,et al. Minimum-energy state estimation for systems with perspective outputs , 2006, IEEE Transactions on Automatic Control.
[10] J. Stuelpnagel,et al. A Least Squares Estimate of Satellite Attitude (Grace Wahba) , 1966 .
[11] Carlos Silvestre,et al. A Nonlinear GPS/IMU based observer for rigid body attitude and position estimation , 2008, 2008 47th IEEE Conference on Decision and Control.
[12] J. Marsden,et al. Discrete mechanics and variational integrators , 2001, Acta Numerica.
[13] F. Markley. Attitude determination using vector observations and the singular value decomposition , 1988 .
[14] Timothy W. McLain,et al. Quadrotors and Accelerometers: State Estimation with an Improved Dynamic Model , 2014, IEEE Control Systems.
[15] Carlos Silvestre,et al. Embedded Vehicle Dynamics Aiding for USBL/INS Underwater Navigation System , 2014, IEEE Transactions on Control Systems Technology.
[16] Carlos Silvestre,et al. Nonlinear observer for 3D rigid body motion , 2013, 52nd IEEE Conference on Decision and Control.
[17] Amit K. Sanyal,et al. Rigid body attitude estimation based on the Lagrange-d'Alembert principle , 2014, Autom..
[18] Philippe Martin,et al. Non-Linear Symmetry-Preserving Observers on Lie Groups , 2007, IEEE Transactions on Automatic Control.
[19] H. D. Black,et al. A passive system for determining the attitude of a satellite , 1964 .
[20] Vijay Kumar,et al. Comparison of an attitude estimator based on the Lagrange-d'Alembert principle with some state-of-the-art filters , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).
[21] Robert E. Mahony,et al. Nonlinear Complementary Filters on the Special Orthogonal Group , 2008, IEEE Transactions on Automatic Control.
[22] H. C. Corben,et al. Classical Mechanics (2nd ed.) , 1961 .
[23] Robert E. Mahony,et al. Gradient-Like Observers for Invariant Dynamics on a Lie Group , 2008, IEEE Transactions on Automatic Control.
[24] Rita Cunha,et al. A nonlinear position and attitude observer on SE(3) using landmark measurements , 2010, Syst. Control. Lett..
[25] G. Wahba. A Least Squares Estimate of Satellite Attitude , 1965 .
[26] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[27] Amit K. Sanyal,et al. Attitude State Estimation with Multirate Measurements for Almost Global Attitude Feedback Tracking , 2012 .
[28] S. Bhat,et al. A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon , 2000 .