Simulation of urban growth using a cellular automata-based model in a developing nation's region

Cellular automata (CA) modeling is one of the recent advances in spatial-temporal modeling techniques to the field of urban growth dynamics. A number of CA-based models of urban growth have produced satisfactory simulations of spatial urban expansion over time. The paper explained the parameters, transformation and calibration of the SLEUTH model-one specific format of the cellular automation model, on the base of which the process of urban growth of changsha city between the year 1996 and 2005 is rebuilt. Moreover the spatial morphology of Changsha city in 2015 and 2030 is separately predicted with the method of scenario simulation. The results of analysis and simulations indicate that application of the SLEUTH model to simulation of urban growth is advisable and the accuracy of simulation is acceptable.

[1]  Guy Engelen,et al.  Cellular Automata as the Basis of Integrated Dynamic Regional Modelling , 1997 .

[2]  Peter M. Allen,et al.  Cities And Regions as Evolutionary, Complex Systems , 1997 .

[3]  Michael Batty,et al.  Urban Evolution on the Desktop: Simulation with the Use of Extended Cellular Automata , 1998 .

[4]  R. White,et al.  High-resolution integrated modelling of the spatial dynamics of urban and regional systems , 2000 .

[5]  Keith C. Clarke,et al.  Spatio‐temporal dynamics in California's Central Valley: Empirical links to urban theory , 2005, Int. J. Geogr. Inf. Sci..

[6]  Elisabete A. Silva,et al.  Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal , 2002 .

[7]  E. Silvaa,et al.  Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal , 2002 .

[8]  Xia Li,et al.  Simulating complex urban development using kernel-based non-linear cellular automata , 2008 .

[9]  Michael Batty,et al.  Urban Systems as Cellular Automata , 1997 .

[10]  F. Wu,et al.  Simulation of Land Development through the Integration of Cellular Automata and Multicriteria Evaluation , 1998 .

[11]  X. Markenscoff,et al.  Earth Sciences , 1965, Nature.

[12]  Claes Andersson,et al.  Assessing the impact of temporal dynamics on land-use change modeling , 2004, Comput. Environ. Urban Syst..

[13]  Suzana Dragicevic,et al.  Assessing cellular automata model behaviour using a sensitivity analysis approach , 2006, Comput. Environ. Urban Syst..

[14]  Keith C. Clarke,et al.  The role of spatial metrics in the analysis and modeling of urban land use change , 2005, Comput. Environ. Urban Syst..

[15]  Keith C. Clarke,et al.  A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area , 1997 .

[16]  M. Batty,et al.  Modeling urban dynamics through GIS-based cellular automata , 1999 .

[17]  Kasper Kok,et al.  A method and application of multi-scale validation in spatial land use models , 2001 .

[18]  Paul A. Longley,et al.  Geographical information systems : principles, techniques, management, and applications , 2005 .

[19]  Daniel Müller,et al.  Issues in spatially explicit statistical land-use/cover change (LUCC) models: Examples from western , 2007 .

[20]  M. Batty,et al.  Stochastic cellular automata modeling of urban land use dynamics: empirical development and estimation , 2003, Comput. Environ. Urban Syst..

[21]  Jia Tao,et al.  Discovery of transition rules for geographical cellular automata by using ant colony optimization , 2007 .

[22]  Fulong Wu,et al.  Calibration of stochastic cellular automata: the application to rural-urban land conversions , 2002, Int. J. Geogr. Inf. Sci..

[23]  Keith C. Clarke,et al.  Loose-Coupling a Cellular Automaton Model and GIS: Long-Term Urban Growth Prediction for San Francisco and Washington/Baltimore , 1998, Int. J. Geogr. Inf. Sci..

[24]  Roger White,et al.  Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns , 1993 .

[25]  Roger White,et al.  The Use of Constrained Cellular Automata for High-Resolution Modelling of Urban Land-Use Dynamics , 1997 .