Topological Construction and Visualization of Higher Order 3D Vector Fields

We present the first algorithm for constructing 3D vector fields based on their topological skeleton. The skeleton itself is modeled by interactively moving a number of control polygons. Then a piecewise linear vector field is automatically constructed which has the same topological skeleton as modeled before. This approach is based on a complete segmentation of the areas around critical points into sectors of different flow behavior. Based on this, we present the first approach to visualizing higher order critical points of 3D vector fields.

[1]  Robert van Liere,et al.  Visualization of Global Flow Structures Using Multiple Levels of Topology , 1999, VisSym.

[2]  Hans Hagen,et al.  Continuous topology simplification of planar vector fields , 2001, Proceedings Visualization, 2001. VIS '01..

[3]  Hans Hagen,et al.  A topology simplification method for 2D vector fields , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[4]  H.-C. Hege,et al.  Interactive visualization of 3D-vector fields using illuminated stream lines , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[5]  Hans-Peter Seidel,et al.  Boundary switch connectors for topological visualization of complex 3D vector fields , 2004, VISSYM'04.

[6]  Freddy Dumortier,et al.  Smooth invariant curves for germs of vector fields in R3 whose linear part generates a rotation , 1986 .

[7]  Gerik Scheuermann,et al.  Clifford convolution and pattern matching on vector fields , 2003, IEEE Visualization, 2003. VIS 2003..

[8]  Robert Haimes,et al.  Critical Points at Infinity: a missing link in vector field topology , 2000 .

[9]  Christian Rössl,et al.  Compression of 2D Vector Fields Under Guaranteed Topology Preservation , 2003, Comput. Graph. Forum.

[10]  Gerik Scheuermann,et al.  Visualizing Nonlinear Vector Field Topology , 1998, IEEE Trans. Vis. Comput. Graph..

[11]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[12]  Robert van Liere,et al.  Collapsing flow topology using area metrics , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[13]  Rüdiger Westermann,et al.  Topology-Preserving Smoothing of Vector Fields , 2001, IEEE Trans. Vis. Comput. Graph..

[14]  Bernd Hamann,et al.  Improving Topological Segmentation of Three-dimensional Vector Fields , 2003, VisSym.

[15]  Lambertus Hesselink,et al.  Representation and display of vector field topology in fluid flow data sets , 1989, Computer.

[16]  Suresh K. Lodha,et al.  Topology preserving compression of 2D vector fields , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[17]  Stephen Mann,et al.  Computing singularities of 3D vector fields with geometric algebra , 2002, IEEE Visualization, 2002. VIS 2002..

[18]  Holger Theisel Designing 2D Vector Fields of Arbitrary Topology , 2002, Comput. Graph. Forum.

[19]  Gregory M. Nielson,et al.  Tools for Computing Tangent Curves and Topological Graphs , 1994, Scientific Visualization.

[20]  Einar Heiberg,et al.  Three-Dimensional Flow Characterization Using Vector Pattern Matching , 2003, IEEE Trans. Vis. Comput. Graph..

[21]  Hans-Peter Seidel,et al.  Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields , 2003, IEEE Visualization, 2003. VIS 2003..

[22]  Santiago Ibáñez,et al.  Singularities of vector fields on , 1998 .

[23]  Gerik Scheuermann,et al.  Detection and Visualization of Closed Streamlines in Planar Flows , 2001, IEEE Trans. Vis. Comput. Graph..