Direct Sun measurements of NO2 column abundances from Table Mountain, California: Intercomparison of low- and high-resolution spectrometers

The NO_2 total column abundance, C_(NO_2) was measured with a direct Sun viewing technique using three different instruments at NASA Jet Propulsion Laboratory's (JPL) Table Mountain Facility in California during an instrument intercomparison campaign in July 2007. The instruments are a high‐resolution (∼0.001 nm) Fourier transform ultraviolet spectrometer (FTUVS) from JPL and two moderate‐resolution grating spectrometers, multifunction differential optical absorption spectroscopy (MF‐DOAS) (∼0.8 nm) from Washington State University and Pandora (∼0.4 nm) from NASA Goddard Space Flight Center. FTUVS uses high spectral resolution to determine the absolute NO_2 column abundance independently from the exoatmospheric solar irradiance using rovibrational NO_2 absorption lines. The NO_2 total column is retrieved after removing the solar background using Doppler‐shifted spectra from the east and west limbs of the Sun. The FTUVS measurements were used to validate the independently calibrated measurements of multifunction differential optical absorption spectroscopy (MF‐DOAS) and Pandora. The latter two instruments start with measured high‐Sun spectra as solar references to retrieve relative NO_2 columns and then apply modified Langley or “bootstrap” methods to determine the amounts of NO_2 in the references to obtain the absolute NO_2 columns. The calibration offset derived from the FTUVS measurements is consistent with the values derived from Langley and bootstrap calibration plots of the NO_2 slant column measured by the grating spectrometers. The calibrated total vertical column abundances of NO_2, C_(NO_2) from all three instruments are compared showing that MF‐DOAS and Pandora data agree well with each other, and both data sets agree with FTUVS data to within (1.5 ± 4.1)% and (6.0 ± 6.0)%, respectively.

[1]  J. Burrows,et al.  Measurements of nitrogen dioxide total column amounts using a Brewer double spectrophotometer in direct Sun mode , 2006 .

[2]  John P. Burrows,et al.  MAX-DOAS measurements of atmospheric trace gases in Ny- ˚ Alesund - Radiative transfer studies and their application , 2004 .

[3]  K. F. Boersma,et al.  Near-real time retrieval of tropospheric NO 2 from OMI , 2006 .

[4]  A. Elokhov,et al.  Slant Column Measurements of O3 and NO2 During the NDSC Intercomparison of Zenith-Sky UV-Visible Spectrometers in June 1996 , 1999 .

[5]  U. Platt,et al.  Ground‐based measurements of halogen oxides at the Hudson Bay by active longpath DOAS and passive MAX‐DOAS , 2004 .

[6]  Glen Jaross,et al.  Validation of Ozone Monitoring Instrument level 1b data products , 2008 .

[7]  V. K. Semenov,et al.  Ground‐based validation of EOS‐Aura OMI NO2 vertical column data in the midlatitude mountain ranges of Tien Shan (Kyrgyzstan) and Alps (France) , 2008 .

[8]  D. Fahey,et al.  Reactive nitrogen and its correlation with ozone in the lower stratosphere and upper troposphere , 1993 .

[9]  P. Crutzen The influence of nitrogen oxides on the atmospheric ozone content , 1970 .

[10]  Maria Tzortziou,et al.  NO2 column amounts from ground‐based Pandora and MFDOAS spectrometers using the direct‐sun DOAS technique: Intercomparisons and application to OMI validation , 2009 .

[11]  J. Margolis,et al.  OH column abundance over Table Mountain Facility, California: AM‐PM diurnal asymmetry , 2005 .

[12]  S. Sander,et al.  Atmospheric hydroxyl radical (OH) abundances from ground-based ultraviolet solar spectra: an improved retrieval method. , 2008, Applied optics.

[13]  S. Inomata,et al.  Doppler detection of hydroxyl column abundance in the middle atmosphere , 1995 .

[14]  James F. Gleason,et al.  Algorithm for NO/sub 2/ vertical column retrieval from the ozone monitoring instrument , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[15]  K. Jucks,et al.  Validation of Aura Microwave Limb Sounder OH measurements with Fourier Transform Ultra‐Violet Spectrometer total OH column measurements at Table Mountain, California , 2008 .

[16]  D. York Least-squares fitting of a straight line. , 1966 .

[17]  S. Wofsy,et al.  Tropospheric chemistry: A global perspective , 1981 .

[18]  K. Boersma,et al.  Trends, seasonal variability and dominant NOx source derived from a ten year record of NO2 measured from space , 2008 .

[19]  James F. Gleason,et al.  Validation of OMI tropospheric NO2 column densities using direct‐Sun mode Brewer measurements at NASA Goddard Space Flight Center , 2008 .

[20]  P. F. Levelt,et al.  Near-real time retrieval of tropospheric NO from OMI , 2007 .

[21]  Ulrich Platt,et al.  Differential optical absorption spectroscopy , 2008 .

[22]  Jerald W. Harder,et al.  Temperature dependent NO2 cross sections at high spectral resolution , 1997 .

[23]  J. Veefkind,et al.  Validation of Ozone Monitoring Instrument nitrogen dioxide columns , 2008 .

[24]  Dimitris Balis,et al.  Validation of the Aura Ozone Monitoring Instrument total column ozone product , 2008 .

[25]  V. Nemtchinov,et al.  OH column abundance over Table Mountain Facility, California: Annual average 1997–2000 , 2002 .

[26]  Bernd Jähne,et al.  Retrieval and analysis of stratospheric NO2 from the Global Ozone Monitoring Experiment , 2004 .

[27]  J. Kerr,et al.  Nitrogen Dioxide Concentrations in the Atmosphere , 1973, Nature.

[28]  L. Brown,et al.  Temperature and Pressure Dependence of High-Resolution Air-Broadened Absorption Cross Sections of NO2 (415−525 nm) , 2004 .

[29]  B. Cameron Reed,et al.  Linear least‐squares fits with errors in both coordinates , 1989 .

[30]  V. Nemtchinov,et al.  High-Resolution Fourier-Transform Ultraviolet-Visible Spectrometer for the Measurement of Atmospheric Trace Species: Application to OH. , 2001, Applied optics.

[31]  Paul S. Monks,et al.  Comparison of OMI and ground‐based in situ and MAX‐DOAS measurements of tropospheric nitrogen dioxide in an urban area , 2008 .

[32]  B. Cameron Reed,et al.  Linear least‐squares fits with errors in both coordinates. II: Comments on parameter variances , 1992 .

[33]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[34]  Henk Eskes,et al.  Estimates of lightning NO x production from GOME satellite observations , 2005 .

[35]  Philip J. Rasch,et al.  MOZART, a global chemical transport model for ozone and related chemical tracers: 1. Model description , 1998 .