Classical Results on the Stability of Linear Time-Invariant Systems, and the Schwarz Form
暂无分享,去创建一个
[1] F. Gantmacher,et al. Applications of the theory of matrices , 1960 .
[2] P. Parks. A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.
[3] C. Chen,et al. A matrix for evaluating Schwarz's form , 1966 .
[4] S. Barnett,et al. Canonical forms for time-invariant linear control systems: a survey with extensions Part I. Single-input case , 1978 .
[5] F. R. Gantmakher. The Theory of Matrices , 1984 .
[6] J. P. Lasalle. Liapunov’s Direct Method , 1986 .
[7] S. Bhattacharyya,et al. Robust control , 1987, IEEE Control Systems Magazine.
[8] B. Ross Barmish,et al. New Tools for Robustness of Linear Systems , 1993 .
[9] G. Meinsma. Elementary proof of the Routh-Hurwitz test , 1995 .
[10] A. Borobia,et al. Three coefficients of a polynomial can determine its instability , 2001 .
[11] J. Ackermann,et al. Robust control , 2002 .
[12] Olga Holtz. Hermite–Biehler, Routh–Hurwitz, and total positivity , 2003, math/0512591.
[13] Miguel V. Carriegos,et al. Canonical forms for single input linear systems , 2003, Syst. Control. Lett..
[14] Robert Shorten,et al. Hurwitz Stability of Metzler Matrices , 2010, IEEE Transactions on Automatic Control.
[15] E. J. Routh. A Treatise on the Stability of a Given State of Motion: Particularly Steady Motion , 2010 .
[16] M. Tyaglov. Sign patterns of the Schwarz matrices and generalized Hurwitz polynomials , 2012 .
[17] M. Tyaglov. On the spectra of Schwarz matrices with certain sign patterns , 2012, 1201.0738.