Third Harmonic Generation microscopy distinguishes malignant cell grade in human breast tissue biopsies

[1]  Kimberly A. Cradock,et al.  Intraoperative visualization of the tumor microenvironment and quantification of extracellular vesicles by label-free nonlinear imaging , 2018, Science Advances.

[2]  Evangelia Gavgiotaki,et al.  Detection of the T cell activation state using nonlinear optical microscopy , 2018, Journal of biophotonics.

[3]  M. Diem,et al.  Label-free FTIR spectroscopy detects and visualizes the early stage of pulmonary micrometastasis seeded from breast carcinoma. , 2018, Biochimica et biophysica acta. Molecular basis of disease.

[4]  S. Boppart,et al.  Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy , 2018, Nature Communications.

[5]  Tadayuki Yoshitake,et al.  Multiscale nonlinear microscopy and widefield white light imaging enables rapid histological imaging of surgical specimen margins. , 2018, Biomedical optics express.

[6]  Tadayuki Yoshitake,et al.  Rapid histopathological imaging of skin and breast cancer surgical specimens using immersion microscopy with ultraviolet surface excitation , 2018, Scientific Reports.

[7]  J. D. de Munck,et al.  Quantitative comparison of 3D third harmonic generation and fluorescence microscopy images , 2018, Journal of biophotonics.

[8]  L. Bonacina,et al.  Health state dependent multiphoton induced autofluorescence in human 3D in vitro lung cancer model , 2017, Scientific Reports.

[9]  Xing Liu,et al.  Monitoring neoadjuvant therapy responses in rectal cancer using multimodal nonlinear optical microscopy , 2017, Oncotarget.

[10]  Paolo P. Provenzano,et al.  Multiphoton fluorescence lifetime imaging of chemotherapy distribution in solid tumors , 2017, Journal of biomedical optics.

[11]  Charles P. Lin,et al.  Intravital imaging of osteocytes in mouse calvaria using third harmonic generation microscopy , 2017, PloS one.

[12]  Ingemar Fredriksson,et al.  Vessel packaging effect in laser speckle contrast imaging and laser Doppler imaging , 2017, Journal of biomedical optics.

[13]  M. Akram,et al.  Awareness and current knowledge of breast cancer , 2017, Biological Research.

[14]  V. Georgoulias,et al.  Distinction between breast cancer cell subtypes using third harmonic generation microscopy , 2017, Journal of biophotonics.

[15]  E. Fabrizio,et al.  An Overview of Lipid Droplets in Cancer and Cancer Stem Cells , 2017, Stem cells international.

[16]  Ihtesham ur Rehman,et al.  Advances in Fourier transform infrared (FTIR) spectroscopy of biological tissues , 2017 .

[17]  Ahmed M. Kabel Tumor markers of breast cancer: New prospectives , 2017 .

[18]  George Filippidis,et al.  THG imaging of lipid body profiles in diagnosis of biological samples , 2016 .

[19]  Y. Miyagi,et al.  Lipid Droplets: A Key Cellular Organelle Associated with Cancer Cell Survival under Normoxia and Hypoxia , 2016, International journal of molecular sciences.

[20]  B. Banerjee,et al.  Imaging of targeted lipid microbubbles to detect cancer cells using third harmonic generation microscopy. , 2016, Biomedical optics express.

[21]  Wael M. Elshemey,et al.  Molecular-Level Characterization of Normal, Benign, and Malignant Breast Tissues Using FTIR Spectroscopy , 2016 .

[22]  Shuangmu Zhuo,et al.  Visualization of Tumor Response to Neoadjuvant Therapy for Rectal Carcinoma by Nonlinear Optical Imaging , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  J. C. Baayen,et al.  Third harmonic generation imaging for fast, label-free pathology of human brain tumors , 2016, Biomedical optics express.

[24]  P. Campagnola,et al.  Applications of Second-Harmonic Generation Imaging Microscopy in Ovarian and Breast Cancer , 2015, Perspectives in medicinal chemistry.

[25]  Pei-Chun Wu,et al.  In vivo Quantification of the Structural Changes of Collagens in a Melanoma Microenvironment with Second and Third Harmonic Generation Microscopy , 2015, Scientific Reports.

[26]  D Parmar,et al.  Diagnostic application of computerised nuclear morphometric image analysis in fine needle aspirates of breast lesions , 2015 .

[27]  James G. Fujimoto,et al.  Assessment of breast pathologies using nonlinear microscopy , 2014, Proceedings of the National Academy of Sciences.

[28]  Rohit Bhargava,et al.  Using Fourier transform IR spectroscopy to analyze biological materials , 2014, Nature Protocols.

[29]  Rohit Bhargava,et al.  Quantifying collagen structure in breast biopsies using second-harmonic generation imaging , 2012, Biomedical optics express.

[30]  Javier Adur,et al.  Quantitative changes in human epithelial cancers and osteogenesis imperfecta disease detected using nonlinear multicontrast microscopy. , 2012, Journal of biomedical optics.

[31]  A. Dvorak,et al.  Lipid Bodies in Inflammatory Cells , 2011, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[32]  Chi‐Kuang Sun,et al.  In Vivo Virtual Biopsy of Human Skin by Using Noninvasive Higher Harmonic Generation Microscopy , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[33]  J. Viola,et al.  Lipid droplets in inflammation and cancer. , 2010, Prostaglandins, leukotrienes, and essential fatty acids.

[34]  J. Jakić-Razumović,et al.  Morphometry of tumor cells in different grades and types of breast cancer. , 2010, Collegium antropologicum.

[35]  Paolo P. Provenzano,et al.  Fluorescence Lifetime Imaging of Endogenous Fluorophores in Histopathology Sections Reveals Differences Between Normal and Tumor Epithelium in Carcinoma In Situ of the Breast , 2009, Cell Biochemistry and Biophysics.

[36]  G. Falzon,et al.  Analysis of collagen fibre shape changes in breast cancer , 2008, Physics in medicine and biology.

[37]  Paolo P. Provenzano,et al.  Nonlinear Optical Imaging of Cellular Processes in Breast Cancer , 2008, Microscopy and Microanalysis.

[38]  A. Fischer,et al.  Hematoxylin and eosin staining of tissue and cell sections. , 2008, CSH protocols.

[39]  Z. Arsov,et al.  Detection of lipid phase coexistence and lipid interactions in sphingomyelin/cholesterol membranes by ATR-FTIR spectroscopy. , 2008, Biochimica et biophysica acta.

[40]  S. Rehman,et al.  Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues , 2008 .

[41]  S. Kazarian,et al.  Applications of ATR-FTIR spectroscopic imaging to biomedical samples. , 2006, Biochimica et biophysica acta.

[42]  S. Mordechai,et al.  Fourier transform infrared spectroscopy in cancer detection. , 2005, Future oncology.

[43]  H. A. Hartman,et al.  A Modification the Osmium Tetroxide Post-Fixation Technique for the Demonstration of Extracellular Lipid in Paraffin-Embedded Tissue Sections , 1984 .

[44]  B Vasavi,et al.  Significance of nuclear morphometry in benign and malignant breast aspirates , 2013, International journal of applied & basic medical research.

[45]  L. Ya FTIR Spectrum Comparisons Among the Breast tissues:the Normal Tissues,Hyperplasia,Fibroadenoma and Cancer , 2011 .

[46]  A. Fabre,et al.  Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy , 2005, Nature Methods.