Compressed Sensing from Phaseless Gaussian Measurements via Linear Programming in the Natural Parameter Space

We consider faithfully combining phase retrieval with classical compressed sensing. Inspired by the recent novel formulation for phase retrieval called PhaseMax, we present and analyze SparsePhaseMax, a linear program for phaseless compressed sensing in the natural parameter space. We establish that when provided with an initialization that correlates with an arbitrary $k$-sparse $n$-vector, SparsePhaseMax recovers this vector up to global sign with high probability from $O(k \log \frac{n}{k})$ magnitude measurements against i.i.d. Gaussian random vectors. Our proof of this fact exploits a curious newfound connection between phaseless and 1-bit compressed sensing. This is the first result to establish bootstrapped compressed sensing from phaseless Gaussian measurements under optimal sample complexity.

[1]  Lei Tian,et al.  Compressive Phase Retrieval , 2011 .

[2]  Yaniv Plan,et al.  One‐Bit Compressed Sensing by Linear Programming , 2011, ArXiv.

[3]  Pravesh Kothari,et al.  A Nearly Tight Sum-of-Squares Lower Bound for the Planted Clique Problem , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[4]  Yonina C. Eldar,et al.  Phase Retrieval: Stability and Recovery Guarantees , 2012, ArXiv.

[5]  Dustin G. Mixon,et al.  Near-optimal phase retrieval of sparse vectors , 2013, Optics & Photonics - Optical Engineering + Applications.

[6]  Gang Wang,et al.  Sparse Phase Retrieval via Truncated Amplitude Flow , 2016, IEEE Transactions on Signal Processing.

[7]  Babak Hassibi,et al.  Sparse phase retrieval: Convex algorithms and limitations , 2013, 2013 IEEE International Symposium on Information Theory.

[8]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[9]  Sundeep Rangan,et al.  Compressive phase retrieval via generalized approximate message passing , 2012, Allerton Conference.

[10]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[11]  Yonina C. Eldar,et al.  Solving Systems of Random Quadratic Equations via Truncated Amplitude Flow , 2016, IEEE Transactions on Information Theory.

[12]  Prateek Jain,et al.  Phase Retrieval Using Alternating Minimization , 2013, IEEE Transactions on Signal Processing.

[13]  Justin Romberg,et al.  Phase Retrieval Meets Statistical Learning Theory: A Flexible Convex Relaxation , 2016, AISTATS.

[14]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[15]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[16]  Yang Wang,et al.  Robust sparse phase retrieval made easy , 2014, 1410.5295.

[17]  Tom Goldstein,et al.  PhaseMax: Convex Phase Retrieval via Basis Pursuit , 2016, IEEE Transactions on Information Theory.

[18]  Yonina C. Eldar,et al.  Simultaneously Structured Models With Application to Sparse and Low-Rank Matrices , 2012, IEEE Transactions on Information Theory.

[19]  Xiaodong Li,et al.  Sparse Signal Recovery from Quadratic Measurements via Convex Programming , 2012, SIAM J. Math. Anal..

[20]  Zhiqiang Xu,et al.  A strong restricted isometry property, with an application to phaseless compressed sensing , 2014, ArXiv.

[21]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[22]  John Wright,et al.  A Geometric Analysis of Phase Retrieval , 2016, International Symposium on Information Theory.

[23]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[24]  P. Rigollet,et al.  Optimal detection of sparse principal components in high dimension , 2012, 1202.5070.

[25]  Vladislav Voroninski,et al.  An Elementary Proof of Convex Phase Retrieval in the Natural Parameter Space via the Linear Program PhaseMax , 2016, ArXiv.

[26]  Xiaodong Li,et al.  Optimal Rates of Convergence for Noisy Sparse Phase Retrieval via Thresholded Wirtinger Flow , 2015, ArXiv.

[27]  Dustin G. Mixon,et al.  Saving phase: Injectivity and stability for phase retrieval , 2013, 1302.4618.

[28]  Yuxin Chen,et al.  Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems , 2015, NIPS.