Nonlinear system identification using Kautz basis expansion-based Volterra–PARAFAC model

Volterra series is a powerful mathematical tool for nonlinear system analysis, which extends the convolution integral for linear systems to nonlinear systems. There is a wide range of nonlinear engineering systems and structures which can be modeled as Volterra series. The usefulness of Volterra models is mainly because of their ability to approximate any fading memory nonlinear systems to an arbitrary accuracy. One question involved in modeling a functional relationship between the input and output of a system using Volterra series is to identify the Volterra kernel functions, the number of which increases rapidly with the system nonlinearity order and the kernels memory. In this paper, a Kautz basis expansion-based Volterra–PARAFAC model is proposed to identify the Volterra nonlinear system from observations of the in- and outgoing signals. In addition, based on the best linear approximation, an effective method for the choice of initial values of pole parameters is presented, and based on the back propagation through-time technique and the Levenberg–Marquardt algorithm, an optimization algorithm for pole and nonlinear parameters is presented in this paper. The simulation studies verify the effectiveness of the proposed novel Kautz basis expansion-based Volterra–PARAFAC modeling method.

[1]  Gene H. Golub,et al.  Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..

[2]  Rifat Hacioglu,et al.  Reduced Complexity Volterra Models for Nonlinear System Identification , 2001, EURASIP J. Adv. Signal Process..

[3]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[4]  B. Wahlberg,et al.  Modelling and Identification with Rational Orthogonal Basis Functions , 2000 .

[5]  W. Silva,et al.  Identification of Nonlinear Aeroelastic Systems Based on the Volterra Theory: Progress and Opportunities , 2005 .

[6]  Robert D. Nowak,et al.  Tensor product basis approximations for Volterra filters , 1996, IEEE Trans. Signal Process..

[7]  M. Schetzen The Volterra and Wiener Theories of Nonlinear Systems , 1980 .

[8]  D. Westwick,et al.  Separable Least Squares Identification of Nonlinear Hammerstein Models: Application to Stretch Reflex Dynamics , 2001, Annals of Biomedical Engineering.

[9]  Guang Meng,et al.  Wavelet basis expansion-based spatio-temporal Volterra kernels identification for nonlinear distributed parameter systems , 2014 .

[10]  Musa H. Asyali,et al.  Use of Meixner functions in estimation of Volterra kernels of nonlinear systems with delay , 2005, IEEE Transactions on Biomedical Engineering.

[11]  Ricardo J. G. B. Campello,et al.  An introduction to models based on Laguerre, Kautz and other related orthonormal functions - part I: linear and uncertain models , 2011, Int. J. Model. Identif. Control..

[12]  Nikos D. Sidiropoulos,et al.  Adaptive Algorithms to Track the PARAFAC Decomposition of a Third-Order Tensor , 2009, IEEE Transactions on Signal Processing.

[13]  Ricardo J. G. B. Campello,et al.  Choice of free parameters in expansions of discrete-time Volterra models using Kautz functions , 2007, Autom..

[14]  Guoyu Meng,et al.  Wavelet basis expansion-based Volterra kernel function identification through multilevel excitations , 2014 .

[15]  Erik G. Larsson,et al.  The Higher-Order Singular Value Decomposition: Theory and an Application [Lecture Notes] , 2010, IEEE Signal Processing Magazine.

[16]  Noël Tanguy,et al.  Pertinent choice of parameters for discrete Kautz approximation , 2002, IEEE Trans. Autom. Control..

[17]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[18]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[19]  Shoaib Amin,et al.  Measurement and Analysis of Frequency-Domain Volterra Kernels of Nonlinear Dynamic $3 \times 3$ MIMO Systems , 2017, IEEE Transactions on Instrumentation and Measurement.

[20]  Tamara G. Kolda,et al.  Orthogonal Tensor Decompositions , 2000, SIAM J. Matrix Anal. Appl..

[21]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[22]  Magnus Isaksson,et al.  Three-Tone Characterization of Nonlinear Memory Effects in Radio-Frequency Power Amplifiers , 2007, IEEE Transactions on Instrumentation and Measurement.

[23]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[24]  Richard J. Prazenica,et al.  Multiresolution Methods for Reduced-Order Models for Dynamical Systems , 2001 .

[25]  Ricardo J. G. B. Campello,et al.  Exact Search Directions for Optimization of Linear and Nonlinear Models Based on Generalized Orthonormal Functions , 2009, IEEE Transactions on Automatic Control.

[26]  Bernhard Schölkopf,et al.  A Unifying View of Wiener and Volterra Theory and Polynomial Kernel Regression , 2006, Neural Computation.

[27]  A. Kibangou,et al.  Nonlinear system modeling and identification using Volterra‐PARAFAC models , 2012 .

[28]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[29]  Ricardo J. G. B. Campello,et al.  Optimal expansions of discrete-time Volterra models using Laguerre functions , 2003, Autom..

[30]  Nalinaksh S. Vyas,et al.  Application of Volterra and Wiener Theories for Nonlinear Parameter Estimation in a Rotor-Bearing System , 2001 .

[31]  Zhike Peng,et al.  Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review , 2017 .

[32]  Gérard Favier,et al.  Parametric complexity reduction of Volterra models using tensor decompositions , 2009, 2009 17th European Signal Processing Conference.

[33]  Ricardo J. G. B. Campello,et al.  An optimal expansion of Volterra models using independent Kautz bases for each kernel dimension , 2008, Int. J. Control.

[34]  W. Rugh Nonlinear System Theory: The Volterra / Wiener Approach , 1981 .

[35]  Wagner Caradori do Amaral,et al.  CHOICE OF FREE PARAMETERS IN EXPANSIONS OF DISCRETE-TIME VOLTERRA MODELS USING KAUTZ FUNCTIONS , 2005 .

[36]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[37]  Z. Lang,et al.  Frequency domain analysis of a dimensionless cubic nonlinear damping system subject to harmonic input , 2009 .

[38]  V. Marmarelis Identification of nonlinear biological systems using laguerre expansions of kernels , 1993, Annals of Biomedical Engineering.

[39]  G. Dumont,et al.  An optimum time scale for discrete Laguerre network , 1993, IEEE Trans. Autom. Control..

[40]  Hoda Moodi,et al.  On identification of nonlinear systems using Volterra kernels expansion on Laguerre and wavelet function , 2010, 2010 Chinese Control and Decision Conference.

[41]  Ricardo J. G. B. Campello,et al.  An introduction to models based on Laguerre, Kautz and other related orthonormal functions - Part II: non-linear models , 2012, Int. J. Model. Identif. Control..

[42]  Richard J. Prazenica,et al.  Multiwavelet Constructions and Volterra Kernel Identification , 2006 .

[43]  I. Hunter,et al.  The identification of nonlinear biological systems: Volterra kernel approaches , 1996, Annals of Biomedical Engineering.

[44]  Kenneth C. Chou,et al.  Representation of Green's Function Integral Operators Using Wavelet Transforms , 2000 .

[45]  Ricardo J. G. B. Campello,et al.  A note on the optimal expansion of Volterra models using Laguerre functions , 2006, Autom..