Nonlinear system identification using Kautz basis expansion-based Volterra–PARAFAC model
暂无分享,去创建一个
Guoyu Meng | Wen-Ming Zhang | C. M. Cheng | Zhihai Peng | X. J. Dong | W. M. Zhang | C. Cheng | X. Dong | G. Meng | Z. Peng
[1] Gene H. Golub,et al. Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..
[2] Rifat Hacioglu,et al. Reduced Complexity Volterra Models for Nonlinear System Identification , 2001, EURASIP J. Adv. Signal Process..
[3] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[4] B. Wahlberg,et al. Modelling and Identification with Rational Orthogonal Basis Functions , 2000 .
[5] W. Silva,et al. Identification of Nonlinear Aeroelastic Systems Based on the Volterra Theory: Progress and Opportunities , 2005 .
[6] Robert D. Nowak,et al. Tensor product basis approximations for Volterra filters , 1996, IEEE Trans. Signal Process..
[7] M. Schetzen. The Volterra and Wiener Theories of Nonlinear Systems , 1980 .
[8] D. Westwick,et al. Separable Least Squares Identification of Nonlinear Hammerstein Models: Application to Stretch Reflex Dynamics , 2001, Annals of Biomedical Engineering.
[9] Guang Meng,et al. Wavelet basis expansion-based spatio-temporal Volterra kernels identification for nonlinear distributed parameter systems , 2014 .
[10] Musa H. Asyali,et al. Use of Meixner functions in estimation of Volterra kernels of nonlinear systems with delay , 2005, IEEE Transactions on Biomedical Engineering.
[11] Ricardo J. G. B. Campello,et al. An introduction to models based on Laguerre, Kautz and other related orthonormal functions - part I: linear and uncertain models , 2011, Int. J. Model. Identif. Control..
[12] Nikos D. Sidiropoulos,et al. Adaptive Algorithms to Track the PARAFAC Decomposition of a Third-Order Tensor , 2009, IEEE Transactions on Signal Processing.
[13] Ricardo J. G. B. Campello,et al. Choice of free parameters in expansions of discrete-time Volterra models using Kautz functions , 2007, Autom..
[14] Guoyu Meng,et al. Wavelet basis expansion-based Volterra kernel function identification through multilevel excitations , 2014 .
[15] Erik G. Larsson,et al. The Higher-Order Singular Value Decomposition: Theory and an Application [Lecture Notes] , 2010, IEEE Signal Processing Magazine.
[16] Noël Tanguy,et al. Pertinent choice of parameters for discrete Kautz approximation , 2002, IEEE Trans. Autom. Control..
[17] Rik Pintelon,et al. System Identification: A Frequency Domain Approach , 2012 .
[18] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[19] Shoaib Amin,et al. Measurement and Analysis of Frequency-Domain Volterra Kernels of Nonlinear Dynamic $3 \times 3$ MIMO Systems , 2017, IEEE Transactions on Instrumentation and Measurement.
[20] Tamara G. Kolda,et al. Orthogonal Tensor Decompositions , 2000, SIAM J. Matrix Anal. Appl..
[21] O. Nelles,et al. An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.
[22] Magnus Isaksson,et al. Three-Tone Characterization of Nonlinear Memory Effects in Radio-Frequency Power Amplifiers , 2007, IEEE Transactions on Instrumentation and Measurement.
[23] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[24] Richard J. Prazenica,et al. Multiresolution Methods for Reduced-Order Models for Dynamical Systems , 2001 .
[25] Ricardo J. G. B. Campello,et al. Exact Search Directions for Optimization of Linear and Nonlinear Models Based on Generalized Orthonormal Functions , 2009, IEEE Transactions on Automatic Control.
[26] Bernhard Schölkopf,et al. A Unifying View of Wiener and Volterra Theory and Polynomial Kernel Regression , 2006, Neural Computation.
[27] A. Kibangou,et al. Nonlinear system modeling and identification using Volterra‐PARAFAC models , 2012 .
[28] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[29] Ricardo J. G. B. Campello,et al. Optimal expansions of discrete-time Volterra models using Laguerre functions , 2003, Autom..
[30] Nalinaksh S. Vyas,et al. Application of Volterra and Wiener Theories for Nonlinear Parameter Estimation in a Rotor-Bearing System , 2001 .
[31] Zhike Peng,et al. Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review , 2017 .
[32] Gérard Favier,et al. Parametric complexity reduction of Volterra models using tensor decompositions , 2009, 2009 17th European Signal Processing Conference.
[33] Ricardo J. G. B. Campello,et al. An optimal expansion of Volterra models using independent Kautz bases for each kernel dimension , 2008, Int. J. Control.
[34] W. Rugh. Nonlinear System Theory: The Volterra / Wiener Approach , 1981 .
[35] Wagner Caradori do Amaral,et al. CHOICE OF FREE PARAMETERS IN EXPANSIONS OF DISCRETE-TIME VOLTERRA MODELS USING KAUTZ FUNCTIONS , 2005 .
[36] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[37] Z. Lang,et al. Frequency domain analysis of a dimensionless cubic nonlinear damping system subject to harmonic input , 2009 .
[38] V. Marmarelis. Identification of nonlinear biological systems using laguerre expansions of kernels , 1993, Annals of Biomedical Engineering.
[39] G. Dumont,et al. An optimum time scale for discrete Laguerre network , 1993, IEEE Trans. Autom. Control..
[40] Hoda Moodi,et al. On identification of nonlinear systems using Volterra kernels expansion on Laguerre and wavelet function , 2010, 2010 Chinese Control and Decision Conference.
[41] Ricardo J. G. B. Campello,et al. An introduction to models based on Laguerre, Kautz and other related orthonormal functions - Part II: non-linear models , 2012, Int. J. Model. Identif. Control..
[42] Richard J. Prazenica,et al. Multiwavelet Constructions and Volterra Kernel Identification , 2006 .
[43] I. Hunter,et al. The identification of nonlinear biological systems: Volterra kernel approaches , 1996, Annals of Biomedical Engineering.
[44] Kenneth C. Chou,et al. Representation of Green's Function Integral Operators Using Wavelet Transforms , 2000 .
[45] Ricardo J. G. B. Campello,et al. A note on the optimal expansion of Volterra models using Laguerre functions , 2006, Autom..