What is a stochastic Hamiltonian process on finite graph? An optimal transport answer

We present a definition of stochastic Hamiltonian process on finite graph via its corresponding density dynamics in Wasserstein manifold. We demonstrate the existence of stochastic Hamiltonian process in many classical discrete problems, such as the optimal transport problem, Schr\"odinger equation and Schr\"odinger bridge problem (SBP). The stationary and periodic properties of Hamiltonian processes are also investigated in the framework of SBP.

[1]  Richard Mateosian,et al.  Old and New , 2006, IEEE Micro.

[2]  Tryphon T. Georgiou,et al.  Robust Transport Over Networks , 2016, IEEE Transactions on Automatic Control.

[3]  I. V. Girsanov On Transforming a Certain Class of Stochastic Processes by Absolutely Continuous Substitution of Measures , 1960 .

[4]  Michele Pavon,et al.  Quantum Schrödinger Bridges , 2003 .

[5]  Paul H. Rabinowitz,et al.  Periodic solutions of hamiltonian systems , 1978 .

[6]  Edward Nelson Derivation of the Schrodinger equation from Newtonian mechanics , 1966 .

[7]  T. Sideris Ordinary Differential Equations and Dynamical Systems , 2013 .

[8]  A. Blaquière,et al.  Controllability of a Fokker-Planck equation, the Schrödinger system, and a related stochastic optimal control (revised version) , 1992 .

[9]  Nawaf Bou-Rabee,et al.  Continuous-time Random Walks for the Numerical Solution of Stochastic Differential Equations , 2015, Memoirs of the American Mathematical Society.

[10]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[11]  C. Léonard Girsanov theory under a finite entropy condition , 2011, 1101.3958.

[12]  Juan Luis Varona,et al.  Port-Hamiltonian systems: an introductory survey , 2006 .

[13]  Arjan van der Schaft,et al.  Port-Hamiltonian Systems on Graphs , 2011, SIAM J. Control. Optim..

[14]  Jianbo Cui,et al.  Time Discretizations of Wasserstein-Hamiltonian Flows , 2020, Math. Comput..

[15]  J. Mawhin,et al.  Critical Point Theory and Hamiltonian Systems , 1989 .

[16]  E. Madelung,et al.  Quantentheorie in hydrodynamischer Form , 1927 .

[17]  S. Chow,et al.  A discrete Schrödinger equation via optimal transport on graphs , 2017, Journal of Functional Analysis.

[18]  S. Chow,et al.  Fokker–Planck Equations for a Free Energy Functional or Markov Process on a Graph , 2011, Archive for Rational Mechanics and Analysis.

[19]  Gershon Wolansky,et al.  Optimal Transport , 2021 .

[20]  C. Villani Optimal Transport: Old and New , 2008 .

[21]  Shui-Nee Chow,et al.  Wasserstein Hamiltonian flows , 2019 .

[22]  J. Maas Gradient flows of the entropy for finite Markov chains , 2011, 1102.5238.

[23]  On Periodic Solutions of Hamiltonian Systems of Differential Equations , 1928 .

[24]  Giuseppe Savaré,et al.  A new class of transport distances between measures , 2008, 0803.1235.

[25]  Christian L'eonard Lazy random walks and optimal transport on graphs , 2013, 1308.0226.

[26]  Wuchen Li,et al.  Geodesics of minimal length in the set of probability measures on graphs , 2017, ESAIM: Control, Optimisation and Calculus of Variations.

[27]  V. Kolokoltsov Nonlinear Markov Processes and Kinetic Equations , 2010 .

[28]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[29]  Christian L'eonard A survey of the Schr\"odinger problem and some of its connections with optimal transport , 2013, 1308.0215.

[30]  Eric A. Carlen,et al.  Conservative diffusions , 1984 .

[31]  Michele Pavon,et al.  Extremal flows in Wasserstein space , 2017, Journal of Mathematical Physics.