EWMA control charts for autoregressive processes

Many processes must be monitored by using observations that are correlated. An approach called algorithmic statistical process control can be employed in such situations. This involves fitting an autoregressive/moving average time series model to the data. Forecasts obtained from the model are used for active control, while the forecast errors are monitored by using a control chart. In this paper we consider using an exponentially weighted moving average (EWMA) chart for monitoring the residuals from an autoregressive model. We present a computational method for finding the out-of-control average run length (ARL) for such a control chart when the process mean shifts. As an application, we suggest a procedure and provide an example for finding the control limits of an EWMA chart for monitoring residuals from an autoregressive model that will provide an acceptable out-of-control ARL. A computer program for the needed calculations is provided via the World Wide Web.