Megabase-Scale Inversion Polymorphism in the Wild Ancestor of Maize

Chromosomal inversions are thought to play a special role in local adaptation, through dramatic suppression of recombination, which favors the maintenance of locally adapted alleles. However, relatively few inversions have been characterized in population genomic data. On the basis of single-nucleotide polymorphism (SNP) genotyping across a large panel of Zea mays, we have identified an ∼50-Mb region on the short arm of chromosome 1 where patterns of polymorphism are highly consistent with a polymorphic paracentric inversion that captures >700 genes. Comparison to other taxa in Zea and Tripsacum suggests that the derived, inverted state is present only in the wild Z. mays subspecies parviglumis and mexicana and is completely absent in domesticated maize. Patterns of polymorphism suggest that the inversion is ancient and geographically widespread in parviglumis. Cytological screens find little evidence for inversion loops, suggesting that inversion heterozygotes may suffer few crossover-induced fitness consequences. The inversion polymorphism shows evidence of adaptive evolution, including a strong altitudinal cline, a statistical association with environmental variables and phenotypic traits, and a skewed haplotype frequency spectrum for inverted alleles.

[1]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[2]  Xun Xu,et al.  Comparative population genomics of maize domestication and improvement , 2012, Nature Genetics.

[3]  M. Kirkpatrick,et al.  Coalescent patterns for chromosomal inversions in divergent populations , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[4]  C. Topp,et al.  Maize Antibody Procedures: Immunolocalization and Chromatin Immunoprecipitation , 2012 .

[5]  M. Noor,et al.  Effects of Inversions on Within- and Between-Species Recombination and Divergence , 2011, Genome biology and evolution.

[6]  L. Huynh,et al.  Chromosome-wide linkage disequilibrium caused by an inversion polymorphism in the white-throated sparrow (Zonotrichia albicollis) , 2011, Heredity.

[7]  F. Simard,et al.  Chromosomal inversions, natural selection and adaptation in the malaria vector Anopheles funestus. , 2008, Molecular biology and evolution.

[8]  J. Doebley,et al.  Genetic signals of origin, spread, and introgression in a large sample of maize landraces , 2010, Proceedings of the National Academy of Sciences.

[9]  J. Willis,et al.  A Widespread Chromosomal Inversion Polymorphism Contributes to a Major Life-History Transition, Local Adaptation, and Reproductive Isolation , 2010, PLoS biology.

[10]  David B. Witonsky,et al.  Using Environmental Correlations to Identify Loci Underlying Local Adaptation , 2010, Genetics.

[11]  B. Gaut,et al.  Fine scale genetic structure in the wild ancestor of maize (Zea mays ssp. parviglumis) , 2010, Molecular ecology.

[12]  K. Takeda,et al.  Construction of intraspecific linkage maps, detection of a chromosome inversion, and mapping of QTL for constitutive root aerenchyma formation in the teosinte Zea nicaraguensis , 2010, Molecular Breeding.

[13]  Simon Fraser,et al.  LDheatmap: An R Function for Graphical Display of Pairwise Linkage Disequilibria Between Single Nucleotide Polymorphisms , 2006 .

[14]  Dawn H. Nagel,et al.  The B73 Maize Genome: Complexity, Diversity, and Dynamics , 2009, Science.

[15]  Kevin L. Schneider,et al.  Maize Centromere Structure and Evolution: Sequence Analysis of Centromeres 2 and 5 Reveals Dynamic Loci Shaped Primarily by Retrotransposons , 2009, PLoS genetics.

[16]  N. Besansky,et al.  The Population Genomics of Trans-Specific Inversion Polymorphisms in Anopheles gambiae , 2009, Genetics.

[17]  E. Buckler,et al.  Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10 , 2009, Proceedings of the National Academy of Sciences.

[18]  B. Gaut,et al.  Historical Divergence and Gene Flow in the Genus Zea , 2009, Genetics.

[19]  D. Piperno,et al.  Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico , 2009, Proceedings of the National Academy of Sciences.

[20]  Mihaela M. Martis,et al.  The Sorghum bicolor genome and the diversification of grasses , 2009, Nature.

[21]  Loren H Rieseberg,et al.  Revisiting the Impact of Inversions in Evolution: From Population Genetic Markers to Drivers of Adaptive Shifts and Speciation? , 2008, Annual review of ecology, evolution, and systematics.

[22]  J. Doebley,et al.  The Genetic Architecture of Complex Traits in Teosinte (Zea mays ssp. parviglumis): New Evidence From Association Mapping , 2008, Genetics.

[23]  M. Aguadé,et al.  Genetic exchange versus genetic differentiation in a medium-sized inversion of Drosophila: the A2/Ast arrangements of Drosophila subobscura. , 2008, Molecular biology and evolution.

[24]  Mario Cáceres,et al.  The Chromosomal Polymorphism Linked to Variation in Social Behavior in the White-Throated Sparrow (Zonotrichia albicollis) Is a Complex Rearrangement and Suppressor of Recombination , 2008, Genetics.

[25]  D. Heckerman,et al.  Efficient Control of Population Structure in Model Organism Association Mapping , 2008, Genetics.

[26]  M. McMullen,et al.  Genetic Design and Statistical Power of Nested Association Mapping in Maize , 2008, Genetics.

[27]  M. Goodman,et al.  Karyotypic variation in Mesoamerican races of maize and its systematic significance , 2008, Economic Botany.

[28]  Richard M. Clark,et al.  Major Regulatory Genes in Maize Contribute to Standing Variation in Teosinte (Zea mays ssp. parviglumis) , 2007, Genetics.

[29]  Brandon S Gaut,et al.  Linkage Mapping of Domestication Loci in a Large Maize–Teosinte Backcross Resource , 2007, Genetics.

[30]  M. Przeworski,et al.  A new approach to estimate parameters of speciation models with application to apes. , 2007, Genome research.

[31]  Edward S. Buckler,et al.  TASSEL: software for association mapping of complex traits in diverse samples , 2007, Bioinform..

[32]  P. Tiffin,et al.  Population Structure and Its Effects on Patterns of Nucleotide Polymorphism in Teosinte (Zea mays ssp. parviglumis) , 2007, Genetics.

[33]  H. Bussey,et al.  Exploring genetic interactions and networks with yeast , 2007, Nature Reviews Genetics.

[34]  K. Devriendt,et al.  Identification and characterization of the TRIP8 and REEP3 genes on chromosome 10q21.3 as novel candidate genes for autism , 2007, European Journal of Human Genetics.

[35]  Gil McVean,et al.  The Structure of Linkage Disequilibrium Around a Selective Sweep , 2007, Genetics.

[36]  C. A. Machado,et al.  Evaluation of the Genomic Extent of Effects of Fixed Inversion Differences on Intraspecific Variation and Interspecific Gene Flow in Drosophila pseudoobscura and D. persimilis , 2007, Genetics.

[37]  V. Bafna,et al.  Evidence for large inversion polymorphisms in the human genome from HapMap data. , 2007, Genome research.

[38]  J. Birchler,et al.  A hemicentric inversion in the maize line knobless Tama flint created two sites of centromeric elements and moved the kinetochore-forming region , 2007, Chromosoma.

[39]  R. Hudson The Variance of Coalescent Time Estimates from DNA Sequences , 2007, Journal of Molecular Evolution.

[40]  R. Huey,et al.  Global Genetic Change Tracks Global Climate Warming in Drosophila subobscura , 2006, Science.

[41]  Mark Kirkpatrick,et al.  Chromosome Inversions, Local Adaptation and Speciation , 2006, Genetics.

[42]  Jinko Graham,et al.  hapassoc: Software for Likelihood Inference of Trait Associations with SNP Haplotypes and Other Attributes , 2006 .

[43]  Paul Scheet,et al.  A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. , 2006, American journal of human genetics.

[44]  P. Smouse,et al.  genalex 6: genetic analysis in Excel. Population genetic software for teaching and research , 2006 .

[45]  B. Mcclintock The association of non-homologous parts of chromosomes in the mid-prophase of meiosis in zea mays , 1933, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[46]  Carlos D Bustamante,et al.  Ascertainment bias in studies of human genome-wide polymorphism. , 2005, Genome research.

[47]  Richard M. Clark,et al.  Estimating a nucleotide substitution rate for maize from polymorphism at a major domestication locus. , 2005, Molecular biology and evolution.

[48]  Carlos Bustamante,et al.  Genomic scans for selective sweeps using SNP data. , 2005, Genome research.

[49]  Steven G. Schroeder,et al.  The Effects of Artificial Selection on the Maize Genome , 2005, Science.

[50]  M R Kearney,et al.  A Rapid Shift in a Classic Clinal Pattern in Drosophila Reflecting Climate Change , 2005, Science.

[51]  J. Doebley,et al.  Genetic Diversity and Population Structure of Teosinte , 2005, Genetics.

[52]  M. Aguadé,et al.  Chromosomal Inversion Polymorphism Leads to Extensive Genetic Structure , 2005, Genetics.

[53]  A. Hoffmann,et al.  The latitudinal cline in the In(3R)Payne inversion polymorphism has shifted in the last 20 years in Australian Drosophila melanogaster populations , 2005, Molecular ecology.

[54]  Y. Ting Spontaneous chromosome inversions of guatemalan teosintes (Zea mexicana) , 1965, Genetica.

[55]  Mauro Santos,et al.  Temperature‐Related Genetic Changes in Laboratory Populations of Drosophila subobscura: Evidence against Simple Climatic‐Based Explanations for Latitudinal Clines , 2004, The American Naturalist.

[56]  B. Charlesworth,et al.  The HKA Test Revisited , 2004, Genetics.

[57]  A. Weeks,et al.  Chromosomal inversion polymorphisms and adaptation. , 2004, Trends in ecology & evolution.

[58]  O. Tenaillon,et al.  Selection versus demography: a multilocus investigation of the domestication process in maize. , 2004, Molecular biology and evolution.

[59]  R. Nielsen,et al.  Linkage Disequilibrium as a Signature of Selective Sweeps , 2004, Genetics.

[60]  Kevin Thornton,et al.  libsequence: a C++ class library for evolutionary genetic analysis , 2003, Bioinform..

[61]  M. Stephens,et al.  Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. , 2003, Genetics.

[62]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[63]  J. Doebley,et al.  A single domestication for maize shown by multilocus microsatellite genotyping , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[64]  M. Levitan STUDIES OF LINKAGE IN POPULATIONS. XIV. HISTORICAL CHANGES IN FREQUENCIES OF GENE ARRANGEMENTS AND ARRANGEMENT COMBINATIONS IN NATURAL POPULATIONS OF DROSOPHILA ROBUSTA , 2001, Evolution; international journal of organic evolution.

[65]  E S Buckler,et al.  Structure of linkage disequilibrium and phenotypic associations in the maize genome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Justin C. Fay,et al.  Hitchhiking under positive Darwinian selection. , 2000, Genetics.

[67]  M W Feldman,et al.  Recent common ancestry of human Y chromosomes: evidence from DNA sequence data. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[68]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[69]  J. Wall,et al.  Unusual haplotype structure at the proximal breakpoint of In(2L)t in a natural population of Drosophila melanogaster. , 1999, Genetics.

[70]  J. Doebley,et al.  Meiotic drive of chromosomal knobs reshaped the maize genome. , 1999, Genetics.

[71]  F. Depaulis,et al.  Selective sweep at the Drosophila melanogaster Suppressor of Hairless locus and its association with the In(2L)t inversion polymorphism. , 1999, Genetics.

[72]  R. Dawe,et al.  Induction of centromeric activity in maize by suppressor of meiotic drive 1. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[73]  M. P. Maguire,et al.  The relationship of homologous synapsis and crossing over in a maize inversion. , 1994, Genetics.

[74]  P. Sniegowski,et al.  The fertility effects of pericentric inversions in Drosophila melanogaster. , 1993, Genetics.

[75]  M. Kreitman,et al.  Adaptive protein evolution at the Adh locus in Drosophila , 1991, Nature.

[76]  R. Hudson,et al.  A test of neutral molecular evolution based on nucleotide data. , 1987, Genetics.

[77]  B. Weir,et al.  ESTIMATING F‐STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE , 1984, Evolution; international journal of organic evolution.

[78]  R. Lande THE EXPECTED FIXATION RATE OF CHROMOSOMAL INVERSIONS , 1984, Evolution; international journal of organic evolution.

[79]  J. Doebley The maize and teosinte male inflorescence: A numerical taxonomic study , 1983 .

[80]  M. Nei,et al.  Mathematical model for studying genetic variation in terms of restriction endonucleases. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[81]  Y. Ting Chromosome polymorphism of teosinte. , 1976, Genetics.

[82]  W. Bodmer,et al.  On the increase of chromosome mutations under random mating. , 1976, Theoretical population biology.

[83]  W. Fitch,et al.  Construction of phylogenetic trees. , 1967, Science.

[84]  Y. Ting Common Inversion in Maize and Teosinte , 1967, The American Naturalist.

[85]  H. Wilkes Teosinte: the closest relative of maize. , 1967 .

[86]  M. Maguire The relationship of crossing over to chromosome synapsis in a short paracentric inversion. , 1966, Genetics.

[87]  C. R. Burnham Discussions in cytogenetics. , 1962 .

[88]  B. Mcclintock Chromosome Constitutions of Mexican and Guatemalan Races of Maize , 1960 .

[89]  T. Dobzhansky,et al.  Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations of Drosophila pseudoobscura. , 1950, Genetics.

[90]  D T Morgan,et al.  A Cytogenetic Study of Inversions in Zea Mays. , 1950, Genetics.

[91]  Edgar Anderson,et al.  Maize in Mexico a Preliminary Survey , 1946 .

[92]  B. Mcclintock Cytological observations of deficiencies involving known genes, translocations and an inversion in Zea mays , 1931 .