Giant Planet Ionospheres and Thermospheres: The Importance of Ion-Neutral Coupling

Planetary upper atmospheres-coexisting thermospheres and ionospheres-form an important boundary between the planet itself and interplanetary space. The solar wind and radiation from the Sun may react with the upper atmosphere directly, as in the case of Venus. If the planet has a magnetic field, however, such interactions are mediated by the magnetosphere, as in the case of the Earth. All of the Solar System’s giant planets have magnetic fields of various strengths, and interactions with their space environments are thus mediated by their respective magnetospheres. This article concentrates on the consequences of magnetosphere-atmosphere interactions for the physical conditions of the thermosphere and ionosphere. In particular, we wish to highlight important new considerations concerning the energy balance in the upper atmosphere of Jupiter and Saturn, and the role that coupling between the ionosphere and thermosphere may play in establishing and regulating energy flows and temperatures there. This article also compares the auroral activity of Earth, Jupiter, Saturn and Uranus. The Earth’s behaviour is controlled, externally, by the solar wind. But Jupiter’s is determined by the co-rotation or otherwise of the equatorial plasmasheet, which is internal to the planet’s magnetosphere. Despite being rapid rotators, like Jupiter, Saturn and Uranus appear to have auroral emissions that are mainly under solar (wind) control. For Jupiter and Saturn, it is shown that Joule heating and “frictional” effects, due to ion-neutral coupling can produce large amounts of energy that may account for their high exospheric temperatures.

[1]  Alan D. Aylward,et al.  A global circulation model of Saturn's thermosphere , 2006 .

[2]  Philippe Zarka,et al.  Detailed study of FUV Jovian auroral features with the post-COSTAR HST faint object camera , 1998 .

[3]  A. Bhardwaj,et al.  Auroral emissions of the giant planets , 2000 .

[4]  V. Vasyliūnas,et al.  Plasma distribution and flow , 1983 .

[5]  N. Achilleos,et al.  Latitudinal Profiles of the Jovian IR Emissions of H+3 at 4 μm with the NASA Infrared Telescope Facility: Energy Inputs and Thermal Balance , 2000 .

[6]  J. McConnell,et al.  Saturn's upper atmosphere from the Voyager 2 Euv solar and stellar occultations , 1983 .

[7]  Takehiko Satoh,et al.  Jupiter's H+3 Emissions Viewed in Corrected Jovimagnetic Coordinates , 1999 .

[8]  B. Sandel,et al.  The Uranian aurora and its relationship to the magnetosphere , 1994 .

[9]  N. Achilleos,et al.  On the dynamics of the jovian ionosphere and thermosphere.: IV. Ion–neutral coupling , 2005 .

[10]  J. Tennyson,et al.  Variation in the H3+ Emission of Uranus , 1997 .

[11]  David J. Southwood,et al.  A new perspective concerning the influence of the solar wind on the Jovian magnetosphere , 2001 .

[12]  Emma J. Bunce,et al.  Jupiter's polar ionospheric flows: Measured intensity and velocity variations poleward of the main auroral oval , 2003 .

[13]  Renée Prangé,et al.  More about the structure of the high latitude Jovian aurorae , 2000 .

[14]  P. Drossart,et al.  Equatorial X-ray Emissions: Implications for Jupiter's High Exospheric Temperatures , 1997, Science.

[15]  T. Hill,et al.  The Jovian auroral oval , 2001 .

[16]  D. Strobel Photochemistry in Outer Solar System Atmospheres , 2005 .

[17]  Emma J. Bunce,et al.  Saturn's Polar Ionospheric Flows and Their Relation to the Main Auroral Oval , 2022 .

[18]  R. Baron,et al.  Emission Source Model of Jupiter's H+3Aurorae: A Generalized Inverse Analysis of Images , 1996 .

[19]  G. Schubert,et al.  Thermal structure of Jupiter's atmosphere near the edge of a 5‐μm hot spot in the north equatorial belt , 1998 .

[20]  M. Kivelson,et al.  The Current Systems of the Jovian Magnetosphere and Ionosphere and Predictions for Saturn , 2005 .

[21]  J. H. Waite,et al.  Thermal profiles in the auroral regions of Jupiter , 1993 .

[22]  Robert A. West,et al.  Time-Variable Phenomena in the Jovian System , 1989 .

[23]  Jonathan Tennyson,et al.  The role of H^+_3 in planetary atmospheres , 2000 .

[24]  Nicholas Achilleos,et al.  Supersonic winds in Jupiter's aurorae , 1999, Nature.

[25]  S. Miller,et al.  Ion winds in Saturn's southern auroral/polar region , 2004 .

[26]  T. Owen,et al.  Imaging Jupiter's aurorae from H+ 3 emissions in the 3–4 μm band , 1991, Nature.

[27]  P. Louarn,et al.  Control of Jupiter's radio emission and aurorae by the solar wind , 2002, Nature.

[28]  J. Tennyson,et al.  Mid-to-Low Latitude H+3Emission from Jupiter☆ , 1997 .

[29]  Travis W. Hill,et al.  Inertial limit on corotation , 1979 .

[30]  Denis Grodent,et al.  A self‐consistent model of the Jovian auroral thermal structure , 2001 .

[31]  Richard M. Thorne,et al.  Relativistic charged particle precipitation into Jupiter's sub-auroral atmosphere , 2003 .

[32]  J. H. Waite,et al.  Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter , 2002, Nature.

[33]  J. Blamont,et al.  Ultraviolet Spectrometer Observations of Uranus , 1986, Science.

[34]  Roger V. Yelle,et al.  Vibrationally excited H2 in the outer planets thermosphere: Fluorescence in the Lyman and Werner bands , 1991 .

[35]  J. McConnell,et al.  The ionospheres-thermospheres of the giant planets , 2004 .

[36]  C. Russell,et al.  GALILEO AT JUPITER: CHANGING STATES OF THE MAGNETOSPHERE AND FIRST LOOKS AT IO AND GANYMEDE* , 1997 .

[37]  Denis Grodent,et al.  Simultaneous observations of the Saturnian aurora and polar haze with the HST/FOC , 1995 .

[38]  Jonathan Tennyson,et al.  H2 Quadrupole and H3+ Emission from Uranus: The Uranian Thermosphere, Ionosphere, and Aurora , 1999 .

[39]  S. F. Bass,et al.  The effects of external material on the chemistry and structure of Saturn's ionosphere , 2000 .

[40]  N. Achilleos,et al.  On the Dynamics of the Jovian Ionosphere and Thermosphere. III. The Modelling of Auroral Conductivity , 2002 .

[41]  Roger V. Yelle,et al.  Gravity Waves in Jupiter's Thermosphere , 1997, Science.

[42]  John C. McConnell,et al.  The upper ionospheres of Jupiter and Saturn , 1991 .

[43]  Emma J. Bunce,et al.  Origin of the main auroral oval in Jupiter's coupled magnetosphere–ionosphere system , 2001 .

[44]  Denis Grodent,et al.  Jupiter's main auroral oval observed with HST-STIS , 2003 .

[45]  Alan M. Watson,et al.  Saturn's hydrogen aurora : Wide field and planetary camera 2 imaging from the Hubble Space Telescope , 1998 .

[46]  M. Heaps The roles of particle precipitation and Joule heating in the energy balance of the Jovian thermosphere , 1976 .

[47]  Nicholas Achilleos,et al.  Mid-to-Low Latitude H 1 3 Emission from Jupiter , 1997 .

[48]  W. Tobiska,et al.  Detection of Rapidly Varying H2 Emissions in Jupiter's Aurora from the Galileo Orbiter , 2001 .

[49]  M. B. Vincent,et al.  Jupiter’s Polar Regions in the Ultraviolet as Imaged by HST/WFPC2: Auroral-Aligned Features and Zonal Motions , 2000 .

[50]  J. H. Waite,et al.  An auroral flare at Jupiter , 2001, Nature.

[51]  D. Strobel,et al.  Heating of Jupiter's Thermosphere by Dissipation of Gravity Waves Due to Molecular Viscosity and Heat Conduction , 1998 .

[52]  J. Tennyson,et al.  Variation in the H[FORMULA][F][SUP]+[/SUP][INF]3[/INF][/F][/FORMULA] Emission of Uranus , 1997 .

[53]  T. Owen,et al.  Images of Excited H3+ at the Foot of the lo Flux Tube in Jupiter's Atmosphere , 1993, Science.

[54]  A. Dessler,et al.  Plasma Motions in Planetary Magnetospheres , 1991, Science.

[55]  T. Hill,et al.  Corotation lag of the Jovian atmosphere, ionosphere, and magnetosphere , 1989 .

[56]  P. Feldman,et al.  The spectrum of the Jovian dayglow observed at 3 A resolution with the Hopkins ultraviolet telescope , 1993 .

[57]  M. Mendillo,et al.  Modeling of global variations and ring shadowing in Saturn's ionosphere , 2004 .

[58]  J. Waite,et al.  Magnetospheric energization by interaction between planetary spin and the solar wind , 1984 .

[59]  Thomas E. Cravens,et al.  Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere , 1983 .

[60]  S. Miller,et al.  Jupiter's thermosphere and ionosphere , 2004 .

[61]  A. Aylward,et al.  Polar heating in Saturn's thermosphere , 2005 .

[62]  J. H. Waite,et al.  Hubble Space Telescope imaging of Jupiter's UV aurora during the Galileo orbiter mission , 1998 .

[63]  J. Tennyson,et al.  The role of H3+in planetary atmospheres , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[64]  Alan M. Watson,et al.  Time-Resolved Observations of Jupiter's Far-Ultraviolet Aurora , 1996, Science.

[65]  Helmut Feuchtgruber,et al.  Photochemistry of Saturn's Atmosphere: I. Hydrocarbon Chemistry and Comparisons with ISO Observations , 2000 .

[66]  G. Millward,et al.  On the Dynamics of the Jovian Ionosphere and Thermosphere: I. The Measurement of Ion Winds , 2001 .

[67]  G. Schubert,et al.  Ion-Drag Effects of Gravity-Wave Heating and Cooling in Jupiter's Thermosphere , 2000 .

[68]  D. Strobel,et al.  On the Temperature of the Jovian Thermosphere , 1973 .

[69]  A. Dalgarno,et al.  The Ultraviolet Spectrum of the Jovian Dayglow , 1996 .

[70]  Y. H. Kim,et al.  Densities and vibrational distribution of H3 + in the Jovian auroral ionosphere , 1991 .

[71]  Jonathan Tennyson,et al.  A baseline spectroscopic study of the infrared auroras of Jupiter , 1997 .

[72]  Emma J. Bunce,et al.  Jupiter's polar ionospheric flows: Theoretical interpretation , 2003 .

[73]  G. Schubert,et al.  Erratum to “Gravity wave heating and cooling in Jupiter's thermosphere”: [Icarus 148 (2000) 266–281] , 2004 .

[74]  David J. Stevenson The outer planets and their satellites , 1978 .

[75]  A. Vasavada,et al.  Jupiter's visible aurora and Io footprint , 1999 .

[76]  Jonathan Tennyson,et al.  JIM: A time‐dependent, three‐dimensional model of Jupiter's thermosphere and ionosphere , 1998 .

[77]  J. Dungey Interplanetary Magnetic Field and the Auroral Zones , 1961 .